Universität Potsdam Institut für Physik Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm |
|
||||||||||||||||||||||||
|
AbstractWe analyse occupation number fluctuations of an ideal Bose gas in a trap which is isolated from the environment with respect to particle exchange (canonical ensemble). We show that in contrast to the predictions of the grand-canonical ensemble, the counting statistics of particles in the trap ground state changes from monotonously decreasing above the condensation temperature to single-peaked below that temperature. For the exactly solvable case of a harmonic oscillator trapping potential in one spatial dimension we extract a Landau-Ginzburg functional which - despite the non-interacting nature of the system - displays the characteristic behaviour of a weakly interacting Bose gas. We also compare our findings with the usual treatment which is base on the grand-canonical ensemble. We show that for an ideal Bose gas neither are the grand-canonical and canonical ensemble thermodynamically equivalent, nor the grand-canonical ensemble can be viewed as a small system in diffusive contact with a particle reservoir. file generated: 28 Apr 2003
|
||||||||||||||||||||||||
printer-friendly version | |||||||||||||||||||||||||
Webmaster |