Universität Potsdam Institut für Physik Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm |
|
||||||||||||||||||||||||
|
AbstractWe establish that the leading critical scaling of the single-copy entanglement is exactly one half of the entropy of entanglement of a block in critical infinite spin chains in a general setting, using methods of conformal field theory. Conformal symmetry imposes that the single-copy entanglement for critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6) (\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an infinite chain and c corresponds to the central charge. This proves that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to general isotropic quasi-free fermionic models. An analytic example of the XY model shows that away from criticality the above simple relation is only maintained near the quantum phase transition point. file generated: 18 Apr 2007
|
||||||||||||||||||||||||
printer-friendly version | |||||||||||||||||||||||||
Webmaster |