Maria Martin

Self-sustained oscillator
Arnold-tounge

The OMC

Implementation Hamiltonian

Properties of the

Limit Cycl

Analytical theory

and simulation
Regimes of limit

Synchronization of OMO

Techniques
Phase diagram
Synchronization

Bibliography

Synchronization of an Opto Mechanical Oscillator

Maria Martin

February 7, 2008

Maria Martin

Phase diagram

Outline

Synchronization

Self-sustained oscillator Arnold-tounge

2 The OMO

Implementation Hamiltonian Equations of motion Properties of the OMO

3 Limit Cycles

Analytical theory and simulation Regimes of limit cycles

4 Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

Maria Martin

Synchronization

Self-sustained oscillator Arnold-tounge

The OMC

Implementation Hamiltonian Equations of motion Properties of the OMO

imit Cvcle

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Synchronization

Maria Martin

Self-sustained oscillator

oscillator Arnold-tounge

The OM

I ne Oivid

Hamiltonian Equations of

Properties of the

Limit Cycle

Analytical theory and simulation Regimes of limit

Synchronizatio of OMO

Techniques Phase diagram Synchronization

Bibliography

What is a self-sustained oscillator?

... an autonomous dissipative system with a stable oscillation on a limit cycle.

e.g.: a pendulum clock

Maria Martin

Self-sustained oscillator
Arnold-tounge

The OM

Implementation Hamiltonian Equations of motion

Properties of t

imit Cycle

Analytical theory and simulation Regimes of limit

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Arnold-tounge

Synchronizability:

Width of synchronization-plateau depends on coupling strength ϵ (strictly proportional only in used approximation).

Maria Martin

Self-sustained oscillator Arnold-tounge

The OMO

Implementation Hamiltonian Equations of motion Properties of the

imit Cvcl

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

The Opto-mechanical Oscillator

Maria Martin

Synchronizati

oscillator
Arnold-tounge

The OMO

Implementation Hamiltonian Equations of

Properties of the

Limit Cycl

Analytical theory

and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

What is the OMO?

Comparison of a pendulum clock with an **O**pto **M**echanical **O**scillator:

Systems: Per

Pendulum Clock

OMO

Maria Martin

Self-sustained oscillator Arnold-tounge

The OMO

Implementation
Hamiltonian
Equations of
motion
Properties of the

OMO

Analytical theory and simulation Regimes of limit

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

What is the OMO?

Comparison of a pendulum clock with an **O**pto **M**echanical **O**scillator:

Systems:	Pendulum Clock	OMO
what oscillates?	pendulum	mechanical element

Maria Martin

oscillator Arnold-tounge

The OMO

Implementation Hamiltonian Equations of

Properties of the OMO

Analytical theory and simulation Regimes of limit

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

What is the OMO?

Comparison of a pendulum clock with an **O**pto **M**echanical **O**scillator:

Systems:	Pendulum Clock	OMO
what oscillates?	pendulum	mechanical element
why stable?	weight	pump-light

Maria Martin

oscillator Arnold-tounge

The OMO

Implementation
Hamiltonian
Equations of
motion
Properties of the

Limit Cycles

Analytical theory and simulation Regimes of limit cycles

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

What is the OMO?

Comparison of a pendulum clock with an **O**pto **M**echanical **O**scillator:

Systems:	Pendulum Clock	OMO
what oscillates?	pendulum	mechanical element
why stable?	weight	pump-light

several possible implementations...

Maria Martin

Self-sustained oscillator Arnold-tounge

The OMO

Implementation

Hamiltonian Equations of motion

Properties of the OMO

imit Cycle

Analytical theory and simulation Regimes of limit

Synchronization of OMO

Techniques Phase diagram

Phase diagram Synchronization of OMO with noise

Bibliography

Implementation à la Vitali

Maria Martin

Synchronizatio

Self-sustained oscillator Arnold-tounge

The OMO

Implementation

Hamiltonian Equations of motion Properties of the

Limite Con

Analytical theory and simulation Regimes of limit

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Implementation à la Vahala

Maria Martin

Synchronization

Self-sustained oscillator Arnold-tounge

The OMC

Implementati

Hamiltonian Equations of

Properties of the OMO

imit Cycle

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Hamiltonian

$$H = H_{\mathsf{mech}} + H_{\mathsf{cav}} + H_{\mathsf{pump}} + H_{\mathsf{ia}} + H_{\mathsf{baths}}$$

Maria Martin

Self-sustained

oscillator Arnold-tounge

The OMC

Implementation Hamiltonian

Equations of

Properties of the OMO

imit Cycle

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Phase diagram
Synchronization
of OMO with

Bibliography

Hamiltonian

$$H = H_{\text{mech}} + H_{\text{cav}} + H_{\text{pump}} + H_{\text{ia}} + H_{\text{baths}}$$

$$H_{\text{mech}} = \frac{1}{2} \left(p^2 + x^2 \right)$$

Maria Martin

Self-sustained

oscillator Arnold-tounge

The OMC

Implementation Hamiltonian

Equations of

Properties of the OMO

imit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Hamiltonian

$$H = H_{\text{mech}} + H_{\text{cav}} + H_{\text{pump}} + H_{\text{ia}} + H_{\text{baths}}$$

$$H_{
m mech} = rac{1}{2} \left(p^2 + x^2
ight)$$

 $H_{
m cav} = \omega_c a^\dagger a$

Maria Martin

Self-sustained

oscillator Arnold-toung

The OMC

Implementation

Hamiltonian

motion
Properties of the

Properties of t OMO

imit Cycl.

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Phase diagram Synchronization of OMO with

Bibliography

Hamiltonian

$$H = H_{\text{mech}} + H_{\text{cav}} + H_{\text{pump}} + H_{\text{ia}} + H_{\text{baths}}$$

$$\begin{array}{lcl} H_{\rm mech} & = & \frac{1}{2} \left(p^2 + x^2 \right) \\ H_{\rm cav} & = & \omega_c a^\dagger a \\ H_{\rm pump} & = & {\rm i} \kappa \left({\rm e}^{-{\rm i} \omega_I t} a^\dagger - {\rm e}^{{\rm i} \omega_I t} a \right) \end{array}$$

Self-sustained

oscillator Arnold-toung

The OMO

Hamiltonian

Equations of motion

Properties of the OMO

imit Cycl.

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Phase diagram Synchronization of OMO with

Bibliography

 $H = H_{\mathsf{mech}} + H_{\mathsf{cav}} + H_{\mathsf{pump}} + H_{\mathsf{ia}} + H_{\mathsf{baths}}$

$$H_{\text{mech}} = \frac{1}{2} (p^2 + x^2)$$

$$H_{\text{cav}} = \omega_c a^{\dagger} a$$

$$H_{\text{pump}} = i\kappa \left(e^{-i\omega_l t} a^{\dagger} - e^{i\omega_l t} a \right)$$

$$H_{\text{ia}} = -g \times a^{\dagger} a$$

Maria Martin

Synchronization

Self-sustained oscillator
Arnold-tounge

The OM

Implementat

Equations of

Equations of

Properties of the

imit Cycle

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Equations of motion

$$\ddot{x} = -x - \gamma \dot{x} + g a^{\dagger} a + \Gamma_x$$

$$\dot{a} = -i\underbrace{(\omega_c - \omega_l)}_{=: \Lambda} a - \kappa a + igxa + \kappa + \Gamma_a$$

Maria Martin

Synchronizati

oscillator Arnold-tounge

The OMO

Implementat

Equations of

Properties of the

Limit Cycl

Analytical theory and simulation Regimes of limit

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Equations of motion

$$\ddot{x} = -x - \gamma \dot{x} + g a^{\dagger} a + \Gamma_x$$

$$\dot{a} = -i\underbrace{(\omega_c - \omega_l)}_{=:\Lambda} a - \kappa a + igxa + \kappa + \Gamma_a$$

ga[†]a :

intensity-dependent force

Maria Martin

Self-sustained

oscillator Arnold-toung

The OMO

Implementat

Equations of

Properties of th

Limit Cycl

Analytical theory

and simulation
Regimes of limit

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Equations of motion

$$\ddot{x} = -x - \gamma \dot{x} + g a^{\dagger} a + \Gamma_x$$

$$\dot{a} = -i\underbrace{(\omega_c - \omega_l)}_{=:\Delta} a - \kappa a + igxa + \kappa + \Gamma_a$$

ga[†]a :

intensity-dependent force

i*gxa* :

length-dependent frequency-modulation

Maria Martin

_

Self-sustained oscillator Arnold-tounge

The OM

Implementation Hamiltonian

Equations of motion

Properties of the OMO

imit Cvcl

Analytical theory and simulation Regimes of limit

Synchronization of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

Properties of the OMO

Maria Martin

Synchronization

Self-sustained oscillator Arnold-tounge

The OMC

Implementation
Hamiltonian
Equations of

Properties of the OMO

Limit Cycles

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Limit Cycles of the OMO

Synchronizati of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

A Limit Cycle

$$x(t) = \bar{x} + B\cos(\Omega t + \varphi_0)$$

... for an analytical theory:

derive $a^{\dagger}a(t)$ from equations of motion for \dot{a} , \dot{a}^{\dagger} and \ddot{x} under limit-cycle-condition and compare results:

- \longrightarrow 3 equations (with physical meaning of $\langle force \rangle$, $\langle energy \rangle$ and $\langle power \rangle$)
- \longrightarrow 3 unknown parameters \bar{x} , B and Ω .

Maria Martin

Synchronizatio

Self-sustained oscillator Arnold-tounge

The OMC

Implementation

Equations of motion
Properties of the

OMO

mit Cycle

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Analytical theory

• Solution for Ω very stable under variation of system parameters

Maria Martin

Self-sustained

oscillator Arnold-tounge

The OMC

Implementation Hamiltonian Equations of motion Properties of the

Limit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Analytical theory

- Solution for Ω very stable under variation of system parameters
- Solution for \bar{x} very small in comparison to Amplitude B

Maria Martin

Arnold-tounge

Properties of the

Analytical theory

and simulation

Phase diagram

Analytical theory

- Solution for Ω very stable under variation of system parameters
- Solution for \bar{x} very small in comparison to Amplitude B

Maria Martin

Synchronization

oscillator Arnold-tounge

The OMO

Implementation Hamiltonian Equations of motion

Properties of the OMO

Limit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with noise

 $\mathsf{Bibliography}$

Analytical theory

- Solution for Ω very stable under variation of system parameters
- Solution for \bar{x} very small in comparison to Amplitude B

Limit cycles:

• green: $\langle P_{\mathsf{fric}} \rangle$ and red: $\langle P_{\mathsf{rad}} \rangle$

Maria Martin

Synchronization

oscillator Arnold-tounge

The OMC

Implementation Hamiltonian Equations of motion

Properties of the OMO

Limit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

Analytical theory

- Solution for $\boldsymbol{\Omega}$ very stable under variation of system parameters
- Solution for \bar{x} very small in comparison to Amplitude B

Limit cycles:

- green: $\langle P_{\mathsf{fric}} \rangle$ and red: $\langle P_{\mathsf{rad}} \rangle$
- only stable solutions yield limit cycles

Maria Martin

Synchronization

Self-sustained oscillator Arnold-tounge

The OM

Hamiltonian Equations of

Properties of the OMO

Limit Cycl

Analytical theory and simulation Regimes of limit

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Simulation

Developement towards a limit cycle:

Higher harmonics in light-intensity:

Maria Martin

Self-sustained oscillator Arnold-tounge

The OMO

Implementation
Hamiltonian
Equations of
motion
Properties of the

Limit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques
Phase diagram
Synchronization
of OMO with
noise

Bibliography

Thresholds for limit cycles

Threshold in optical detuning Δ :

Maria Martin

.

Self-sustained oscillator
Arnold-tounge

The OMO

Implementation Hamiltonian Equations of motion

Properties of the OMO

Analytical theory

and simulation
Regimes of limit

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

Thresholds for limit cycles

Thresholds in mechanical damping γ and coupling g:

Maria Martin

Self-sustained oscillator Arnold-tounge

The OM

Implementation Hamiltonian Equations of

Properties of the OMO

imit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Phase diagram for limit cycles

Critical parameters for number of limit cycles are: optical detuning Δ and relation γ/g^2

Maria Martin

Self-sustained oscillator Arnold-tounge

The OMO

Implementation
Hamiltonian
Equations of
motion
Properties of the

OMO

imit Cycle

Analytical theory and simulation Regimes of limit

Synchronization of OMO

Techniques Phase diagram Synchronization of OMO with

Bibliography

Synchronization of the OMO

Maria Martin

Self-sustained oscillator
Arnold-tounge

The OMO

Hamiltonian
Equations of motion
Properties of the

imit Cycle

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

Techniques

• Define a Phase $\Phi(t) = \Omega t + \varphi_0$ on the limit cycle $x(t) = \bar{x} + B \cos \Phi$.

Maria Martin

Synchronizati

oscillator
Arnold-tounge

The OM

Implementation Hamiltonian Equations of motion Properties of the

Limit Cycles

Analytical theory and simulation Regimes of limit

Synchronizatio of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

- Define a Phase $\Phi(t) = \Omega t + \varphi_0$ on the limit cycle $x(t) = \bar{x} + B \cos \Phi$.
- Define a phase-difference $\Psi(t) = \Phi(t) \omega t$ to external force.

Maria Martin

Synchronizati

oscillator Arnold-toung

The OM

Implementation Hamiltonian Equations of motion Properties of th

Limit Cycle

Analytical theor and simulation Regimes of limit cycles

Synchronization of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

- Define a Phase $\Phi(t) = \Omega t + \varphi_0$ on the limit cycle $x(t) = \bar{x} + B \cos \Phi$.
- Define a phase-difference $\Psi(t) = \Phi(t) \omega t$ to external force.
- Find dynamics for Ψ : $\dot{\Psi} = -\nu + \epsilon q(\Psi)$ (See Pikovsky et al.)

Maria Martin

Synchronizati

oscillator Arnold-toung

The OM

Implementation Hamiltonian Equations of motion Properties of th

Limit Cycle

Analytical theor and simulation Regimes of limit cycles

of OMO

Techniques

Phase diagram Synchronization of OMO with noise

Bibliography

- Define a Phase $\Phi(t) = \Omega t + \varphi_0$ on the limit cycle $x(t) = \bar{x} + B \cos \Phi$.
- Define a phase-difference $\Psi(t) = \Phi(t) \omega t$ to external force.
- Find dynamics for Ψ : $\dot{\Psi} = -\nu + \epsilon q(\Psi)$ (See Pikovsky et al.)
- | Synchronization $\iff \dot{\Psi} = 0$

Maria Martin

Synchronization

Self-sustained oscillator Arnold-tounge

The OMO

Implementation
Hamiltonian
Equations of
motion
Properties of the

imit Cvcl

Analytical theory and simulation Regimes of limit cycles

Synchronization of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

Techniques

ullet Synchronization $\Longleftrightarrow \dot{\Psi} = 0$

Maria Martin

Synchronization

Self-sustained oscillator
Arnold-tounge

The OMO

Implementation
Hamiltonian
Equations of
motion
Properties of the

imit Cvcl

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

- Synchronization $\iff \dot{\Psi} = 0$
- Define a potential $V(\Psi) := \nu \Psi \epsilon \int^{\Psi} q(x) dx$

Maria Martin

Synchronizatio

oscillator Arnold-tounge

The OMO

Implementation Hamiltonian Equations of motion Properties of the

Limite Const

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques

Phase diagram Synchronization of OMO with

Bibliography

- Synchronization $\iff \dot{\Psi} = 0$
- Define a potential $V(\Psi) := \nu \Psi \epsilon \int^{\Psi} q(x) dx$
- Synchronization in local minima!

Maria Martin

.

Self-sustained oscillator Arnold-tounge

The OMC

Implementati

Hamiltonian Equations of

Properties of the OMO

imit Cvcl

Analytical theory and simulation Regimes of limit

Synchronizatio of OMO

Techniques

Phase diagram Synchronization of OMO with noise

Bibliography

Phase diagram for synchronization and limit cycles

Maria Martin

Synchronizat

oscillator
Arnold-tounge

The OMC

Implementati Hamiltonian

Equations of motion
Properties of the OMO

Limit Cvcl

Analytical theory

and simulation Regimes of limit cycles

Synchronization of OMO

Techniques
Phase diagram
Synchronization
of OMO with
noise

Bibliography

Synchronization in the presence of noise

• Find dynamics for Ψ : $\dot{\Psi} = -\nu + \epsilon q(\Psi) + \Gamma_{\Psi}$ (See Pikovsky et al.)

Maria Martin

Synchronizat

oscillator
Arnold-tounge

The OMO

Hamiltonian
Equations of motion
Properties of the

imit Cycl

Analytical theory and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

Synchronization in the presence of noise

- Find dynamics for Ψ : $\dot{\Psi} = -\nu + \epsilon q(\Psi) + \Gamma_{\Psi}$ (See Pikovsky et al.)
- | Synchronization $\iff \langle \dot{\Psi} \rangle \approx 0$

Maria Martin

Self-sustained oscillator Arnold-tounge

The OMO

Implementation Hamiltonian Equations of motion Properties of the

Limit Cycle

Analytical theorand simulation Regimes of limi

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

Synchronization in the presence of noise

- Find dynamics for Ψ : $\dot{\Psi}=-\nu+\epsilon q(\Psi)+\Gamma_{\Psi}$ (See Pikovsky et al.)
- Synchronization $\iff \langle \dot{\Psi} \rangle \approx 0$
- \bullet Find a Fokker-Planck-Equation for Ψ to determine $\langle\dot{\Psi}\rangle$

Maria Martin

Synchronization

Self-sustained oscillator Arnold-tounge

The OM

Implementation
Hamiltonian
Equations of

Properties of th OMO

Analytical theor and simulation Regimes of limit

Synchronizat of OMO

Techniques Phase diagram Synchronization of OMO with noise

 $\mathsf{Bibliography}$

Arnold-tounge for OMO: quasi-deterministic case

Effects of noise:
Only negligible effects on Synchronizability of OMO!

Maria Martin

Synchronization Self-sustained

oscillator Arnold-tounge

The OMO

Implementation Hamiltonian Equations of motion Properties of th

Limit Cycle

Analytical theor and simulation Regimes of limit cycles

Synchronizatio of OMO

Techniques Phase diagram Synchronization of OMO with noise

Bibliography

V. Giovannetti and D. Vitali.

Phase-noise measurement in a cavity with a movable mirror undergoing quantum brownian motion. *Physical Review A*, 63:023812, 2001.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala.

Characterization of a radiation-pressure-driven micromechanical oscillator.

Physical Review A, 74:023813, 2006.

A. Pikovski, M. Rosenblum, and J. Kurths. *Synchronisation*.

Cambridge University Press, 2001.

R. L. Stratonovich.

Topics in the Theory of Random Noise, volume 2. Gordon and Breach, 1967.