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The preliminary programme for this lecture:

1. Reminder: Atom-field interaction, density matrices

2. Master equations in quantum optics

— two-level atoms: spontaneous emission, Bloch equations,
Glauber’s photodetector theory, resonance fluorescence, quan-
tum regression formula

— positive maps, semigroups, the Lindblad master equation, entan-
glement

3. Applications

— radiation forces, laser cooling, optical lattices

— slow light (electromagnetically induced transparency)

— quantum theory of the laser and the micromaser
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Chapter 0

Atom-field interactions

0.1 Hamiltonian and relevant approximations

Hamiltonian HA + HF + HAF

electric dipole coupling in resonance (“rotating wave”) approximation

HAF = −d̂ · E(xA) ≈ −
∑

k

Ek

[
dge · fk(xA)σ†ak + h.c.

]
(1)

sum over field modes k, (classical) mode functions fk(x), one-photon field
amplitude Ek = (h̄ωk/2ε0)1/2

two relevant atomic states |g〉 and |e〉, transition matrix element of the
electric dipole operator dge = 〈g|d̂|e〉, two-level annihilation operator σ =

|g〉〈e|
one-photon coupling frequency

h̄gk = −Ekdge · fk(xA) (2)

electric dipole approximation: atom size small compared to “relevant
wavelengths”.

resonance approximation: field modes (incl. laser mode) near the reso-
nance frequency ωA, hence only a narrow spectral band needed, with wave-
length λA = 2πc/ωA % a0 (Bohr radius: size of atom)

“rotating-wave approximation”: only resonant (energy-conserving)
terms in the interaction Hamiltonian, akσ† and a†

kσ: one photon disappears
and atom becomes excited (absorption) or the inverse (photon emission).
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0.2 Quantum states of a two-level system
(“qbit”)

stationary states
pure state

|ψ(t)〉 = α(t)|e〉+ β(t)|g〉 (3)

normalization |α(t)|2+|β(t)|2 = 1 consistent with probability interpretation.
time evolution under “free atomic Hamiltonian” (in the Schrödinger pic-

ture)

α(t) = α(0) e−iωAt/2 (4)

β(t) = β(0) eiωAt/2 (5)

with our choice of zero energy. (Other choices: common, time-dependent
phase factor.)

density matrix for a pure state ρ(t) = |ψ(t)〉〈ψ(t)| (projector), a her-
mitean 2× 2-matrix

quantum average of atom observable A = σ,σ3, . . .:

〈A〉 = 〈ψ|A|ψ〉 = tr [Aρ] = tr [ρA] (6)

mixed state: density matrix ρ, cannot be written as projector.
example: thermal state at temperature T ,

ρ = Z−1
(
|g〉〈g| + e−h̄ωA/kBT |e〉〈e|

)
, Z = 1 + e−h̄ωA/kBT (7)

Boltzmann factor for weighting the stationary states: combination of quan-
tum and classical (ensemble) average.

geometric significance: Bloch vector and Bloch sphere
three components s = (s1, s2, s3), expectation value of the spin operator

s3 = 〈σ3〉 = |α|2 − |β|2 (8)

s1 = 〈σ1〉 = 〈σ + σ†〉 = 2 Re(α∗β) (9)

s2 = 〈σ2〉 = (·) Im(α∗β) (10)

sometimes complex notation used, s = 〈σ〉 = (s1 − is2)/2 = α∗β
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pure state: 1 = s2 = s2
1 + s2

2 + s2
3 = 4|s|2 + s2

3, on the surface of the Bloch
sphere.

“north pole”: excited state |e〉 (consistent with “spin up”)
“south pole”: ground state |e〉 (“spin down”)
on the equator: superposition states with equal weight, e.g. (|g〉 +

eiφ|e〉)/
√

2. Relative phase φ determines position on the equator:

s1 = ±1
|g〉± |e〉√

2

s2 = ±1
|g〉± i |e〉√

2
(11)

(free) time evolution: rotation of the Bloch vector around the 3-axis
with angular frequency ωA.

spin precession in the Heisenberg picture:

dσ

dt
=

i

h̄
[HA, σ] = (·)ωAe3 × σ (12)

take expectation value: gives equation of motion for the Bloch vector.
rotation of the Bloch vector: pure states remain pure
mixed states: are located inside the Bloch sphere. For the thermal

state (7), for example:

s = −e3 tanh(h̄ωA/2kBT ) (13)

in the “infinite temperature limit”, s→ 0, the “completely mixed state”.
Quantitative measures of “being pure”: purity and entropy, see exer-

cises.
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Chapter 1

Master equations in quantum
optics

1.1 Idea

A master equation describes the time evolution of a quantum system be-
yond the Schrödinger equation. It applies to “open systems” or systems
for which the Hamiltonian is not completely known. Master equations are
the quantum analogue of kinetic theories that describe the dynamics of a
system including different dissipative effects. One can thus follow the ap-
proach of the system towards thermal equilibrium.

In quantum optics, the “system” can be an atom, a collection of atoms,
or a field mode in a cavity. The system is “open” because it interacts with the
“rest of the world”, manifest via a continuum of quantized field modes. An
atom decays irreversibly by emitting a photon into previously empty vac-
uum modes. This phenomenon of “spontaneous emission” does not allow
for a description in terms of a Hamiltonian. In fact, the state of the atom
does not remain pure, and entropy increases because the photon can be
emitted into any direction of space. A cavity mode decays because photons
escape through the cavity mirrors, effectively becoming excitations of the
“modes outside the cavity”. Alternatively, the field energy can be absorbed
by the material making up the mirrors.

We focus first on the derivation of a master equation for a two-level
atom. We shall find from the general theory two results: (1) the rate of
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spontaneous emission of an electronically excited state and (2) Glauber’s
formula for the signal of a photodetectors in terms of normally ordered
correlation functions of the electric field operator.

1.1.1 Time scales

The derivation builds on the following hierarchy of time scales:

2π

ωA

<∼ τc *
2π

Ω
∼ 1

γ
(1.1)

where the shortest time scale is the optical period of the light field that
is near-resonant with the atomic transition frequency ωA. This is typically
smaller than a few fs (femtoseconds) (in the visible range).

The “correlation time” τc of the electromagnetic field describes qualita-
tively the time interval over which the quantum fluctuations of the electro-
magnetic field (that couple significantly to the atom) are “smooth”. Two
electric field measurements are not significantly “similar” if they are taken
at intervals larger than τc. We give an estimate below, it turns out to be a
few times larger than the optical period.

The third time scale is the Rabi period that scales with the inverse of
the Rabi frequency of a laser. This depends of course on the laser power
(and the atomic transition dipole), but typical values are in the 1–10 ns
(nanoseconds) range. Note that this is much longer than the optical period
and the field correlation time.

The last time scale is the lifetime of the excited state of the atom, in-
versely proportional to the spontaneous decay rate γ. This is typically in
the 1–10 ns range as well, depending on the atom.

We thus have a situation similar to “Brownian motion”: the atom is
“shaken around” by the vacuum field fluctuations that vary much faster
than the typical dynamics for the atomic state (Rabi oscillations, sponta-
neous decay). The master equation takes advantage of this separation of
time scales to find an equation of motion that can be applied on “slow time
scales”. As a result, one gets a single equation that describes both, the
“Hamiltonian” effects of a laser (Rabi oscillations) and the “dissipative /
friction” effects due to vacuum fluctuations.
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1.1.2 Field correlation time

To get an estimate of the field correlation time, we compute the two-time
correlation (or coherence) function

C(τ) = 〈E(t + τ)E(t)〉 (1.2)

If we use the coupling constants gk to write the mode expansion of the
quantized field (this is equivalent to re-scaling the electric field so that it
has units of frequency), we get

〈E(t + τ)E(t)〉 =
∑

k

|gk|2〈ak(t + τ)a†
k(t)〉

=
∑

k

|gk|2 e−iωkτ (1.3)

An explicit calculation using the mode amplitudes in free space leads to an
integral of the form

C(τ) ∼
∞∫

0

dω ω3 e−iωkτ (1.4)

which looks like a third derivative of a δ-function in τ . Well, not exactly
since the integrations starts at ω = 0.

Actually, we have forgot one thing in this estimate: the Hamiltonian
we start with is only valid for field modes k near-resonant with the atomic
transition, ωk ∼ ωA. It thus seems reasonable to restrict the frequency inte-
gral in Eq.(1.4) to an interval around ωA, with a width ∆ω that is typically
smaller than ωA.

Now, from the properties of the Fourier transformation, we know that
the correlation function C(τ) given by the integral (1.4) has a “width in
time” given by ∆τ ∆ω ∼ 1. Since this width is precisely the definition of
the correlation time, we have

1

ωA

<∼
1

∆ω
∼ τc. (1.5)

Typical value: a few 10 fs.

1.2 Evolution of the atomic operators

We shall work in the Heisenberg picture. Note that operators describing
different degrees of freedom (field, atom) commute at equal times.
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1.2.1 Atomic dipole

“eliminate” the field operators by solving their equation of motion:

dak

dt
=

i

h̄
[H, ak] = −iωkak − ig∗kσ (1.6)

ak(t) = ak(0) e−iωkt − ig∗k

t∫

0

dt′ σ(t′) e−iωk(t−t′) (1.7)

the “particular solution” contains the “past” of the atomic dipole operator
σ(t′). Insert this into the equation for σ. Let’s look at this equation first:

dσ

dt
=

i

h̄
[H, σ] = −iωAσ + i

∑

k

gk

[
σ†, σ

]
ak

= −iωAσ + i
∑

k

gkσ3ak (1.8)

We see here that the two-level atom leads to nonlinear equations of mo-
tion: the operator product σ3ak appears. For the moment, these operators
commute (at equal times). But we now want to insert the solution (1.7)
for ak(t), and the two terms that appear here do not commute separately
with σ3. For this reason, we take now a specific operator order (so-called
“normal order”) where the annihilation operators (ak or σ) act first. This is
the order already used in Eq.(1.8), and we thus get

dσ

dt
= −iωAσ + iσ3E0(t) +

t∫

0

dt′
∑

k

|gk|2e−iωk(t−t′)σ3(t)σ(t′) (1.9)

where we used the abbreviation

E0(t) =
∑

k

gkak(0) e−iωkt (1.10)

for the freely evolving electric field operator (positive frequency component
only, and re-scaled by the atomic transition dipole). In the integral over t′,
we see that the correlation function C(t− t′) appears, and using τ = t− t′

as integration variable, we have

dσ

dt
= −iωAσ + iσ3E0(t) +

t∫

0

dτ C(τ)σ3(t)σ(t− τ) (1.11)
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Now comes the key observation: under the time integral occur two very
different functions. The correlation function C(τ) is very narrow in τ . The
atomic operator σ(t− τ) contains a “fast free evolution” (generated by the
first term in its equation of motion), but once this is factored out, we anti-
cipate that its evolution is “slow”:

σ(t− τ) = e−iωA(t−τ)σ̃(t− τ) ≈ e−iωA(t−τ)σ̃(t) = e+iωAτσ(t) (1.12)

Here, we introduced temporarily the dipole operator σ̃(t′) (in an interaction
picture).

The main benefit of this approximation is that only atomic operators at
time t appear in the equation of motion. The two-level commutation rules1

give σ3(t)σ(t) = −σ(t), and we end up with

dσ

dt
= −iωAσ + iσ3E0(t)− σ(t)

t∫

0

dτ C(τ) eiωAτ (1.13)

The upper integration limit t is actually the difference between our initial
time and the actual time where the equation of motion is computed. We
now let this time difference be much larger than the correlation time τc.
This is consistent with the assumption that the atomic dynamics is slow on
the scale of the field’s correlation time. Then the integrand is effectively
zero at the upper limit, and we get a constant complex number

γ + iδωA =

t%τc∫

0

dτ C(τ) eiωAτ =
S(ωA)

2
+ iP

+∞∫

−∞

dω

2π

S(ω)

ω − ωA
(1.14)

where S(ω) is the Fourier transform of the correlation function C(τ) and P
means the principal part of the integral.

Explicit calculation: spectrum of vacuum fluctuations

S(ω) = 2π
∑

k

|gk|2δ(ωk − ω) (1.15)

result from QO I:

S(ω) = 2π
1

h̄2 (2/3)|dge|2
h̄ω

2ε0

4πω2

(2πc)3
(1.16)

1A pedantic remark: operator products evolve as products under the Heisenberg equa-
tions of motion. This is because taking the commutator with a product is compatible with
the product rule of (time) derivatives.
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last factor: density of field modes per dω and volume. The spontaneously
decaying atom is a “detector” for vacuum field fluctuations. The rate γ

is also called the “natural linewidth” of the atomic transition |g〉 ↔ |e〉 be-
cause it gives the width in frequency of the spontaneous emission spectrum.

decay rate

γ =
1

2
S(ωA) =

|dge|2(ωA/c)3

6πh̄ε0
(1.17)

order of magnitude, with |dge| ∼ ea0 (electron charge × atom size)

γ

ωA
∼ αfs(a0/λA)2 (1.18)

with fine structure constant αfs = e2/4πε0h̄c ≈ 1/137.04 and wavelength λA

of resonant transition. Hence, indeed decay is “slow” on the scale of the
optical period.

Frequency shift δωA is related to asymmetry of vacuum spectrum around
the transition frequency. Interpretation from second order perturbation
theory: modes slightly below the atomic resonance, ωk

<∼ ωA tend to push
the level |e〉 upwards. Modes above resonance: push downwards. Null
effect if spectrum is flat.

Actual calculation requires UV cutoff ωuv and interaction Hamiltonian
beyond the resonance (rotating wave) approximation (Bethe, calculation
of the Lamb shift). Order of magnitude:

δωA ≈ γ log(ωuv/ωA) (1.19)

and a consistent cutoff is the electron rest mass, ωuv ∼ mec2/h̄. Hence
comparable to the natural linewidth. Note: relativistic theory required,
where wavelengths up to electron Compton wavelength h̄/mec are in-
volved. This goes beyond the “long wavelength approximation” because
h̄/mec ∼ αfsa0 * a0.

1.2.2 Atomic populations

Actually, we did not yet show that γ is the rate of decay for the excited
state. For this, we need the equation of motion for the occupations of the
two energy levels. This is described by the atomic operator σ3, also called
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the “inversion” because 〈σ3〉 > 0 when the excited state is more occupied
than the ground state.

Heisenberg equation of motion

dσ3

dt
= +2i

∑

k

[
g∗ka

†
kσ − gkσ

†ak

]

= 2i
[
E†

0(t)σ − σ†E0(t)
]

− 2

t∫

0

dt′
[
C∗(t− t′)σ†(t′)σ(t) + C(t− t′)σ†(t′)σ(t)

]
(1.20)

where we inserted the formal solution for ak(t) and brought the operator
products in normal order. We apply to the t′-integral the same prescription
as before and get

t∫

0

dt′
[
C∗(t− t′)σ†(t′)σ(t) + C(t− t′)σ†(t′)σ(t)

]

≈ (γ − iδωA)σ†(t)σ(t) + (γ + iδωA)σ†(t)σ(t) = γ(σ3(t) + )(1.21)

where the frequency shift drops out. By construction, the operator σ3(t)+

gives the occupation of the excited state. From Eqs.(1.20, 1.21), we can
thus read off the decay rate 2γ for the excited state population, while the
ground state remains stable.

Finally, the equation for the inversion operator becomes

dσ3

dt
= −2γ(σ3(t) + ) + 2i

[
E†

0(t)σ − σ†E0(t)
]

(1.22)

Combined with the equation of motion for the atomic dipole operator,

dσ

dt
= −(γ + iωA)σ + iσ3E0(t) (1.23)

we have thus found the “optical Bloch equations”.
In Eq.(1.23), we have made the replacement ωA + δωA ,→ ωA for the

atomic frequency. This is called “renormalization”: we combine the shift
induced by the coupling to the vacuum field with the “naked” transition
frequency into the frequency that can be physically observed. Recall that
in reality, we can never “switch off” the coupling to the vacuum. Hence
the “naked” two-level atom that we started with is actually a theoretical
artefact.
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1.3 Bloch equations with a coherent laser field

Note that we did not specify yet the state of the light field: it is in fact
encoded in the operator E0(t) that depends on the initial field operators
ak(0). Two examples will be studied now, the first one being an atom driven
by a laser field. We have argued that to a good approximation, we can
assume that the light field in a coherent state |αL〉. We assume that at t = 0,
the total system is in the product state |ψ(0), αL〉 and take the expectation
value of the Bloch equation. This gives the dynamics of the Bloch vector as
follows (optical Bloch equations in the proper sense)

ds

dt
= −(γ + iωA)s + (i/2)s3Ω e−iωLt (1.24)

ds3

dt
= −2γ(s3(t) + 1) + i

[
Ω∗(t)eiωLts− s∗Ωe−iωLt

]
(1.25)

where Ω/2 = 〈αL|E0(0)|αL〉 is the (complex) Rabi frequency and ωL the
frequency of the laser mode.

These equations have time-dependent coefficients, but this can be re-
moved by making a transformation into a “rotating frame”. We make the
replacement

s(t) ,→ s(t)e−iωLt (1.26)

where the “new” s(t) satisfies Bloch equations with time-independent coef-
ficients

ds

dt
= −(γ − iδ)s + (i/2)s3Ω

ds3

dt
= −2γ(s3(t) + 1) + i [Ω∗s− s∗Ω]

(1.27)

where δ = ωL − ωA is the “laser detuning”. Note that the symbols are not
the same throughout the books: the Rabi frequency Ω or the decay rate γ

can differ by a factor of 2 (or −2), the detuning can have the opposite sign.
The Bloch equations are a “workhorse” of atomic physics and quantum

optics. They are used to compute light absorption, excitation spectra, popu-
lation transfer, radiation forces on atoms etc. In the exercises, you compute
the stationary state of the Bloch equations (attention with the different sign
for δ: this one should be correct)

sss =
−i(Ω/2)(γ + iδ)

γ2 + δ2 + Ω2/2
(1.28)
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s3,ss =
−(γ2 + δ2)

γ2 + δ2 + Ω2/2
(1.29)

Discussion: average atomic dipole operator (induced by laser field),
average inversion. Line broadening.

Exercise: total excitation N , does not commute when laser included.
Expectation value of Ṅ in stationary state, interpretation as total scattered
intensity.

Exercise: spectrum of spontaneous emission, from formal solution.
Need formal solution of atomic dipole operator, Eq.(1.34).
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