
Chapter 2

The quantized field

We give an elementary introduction to the quantization of the electromagnetic
field. We adopt the Coulomb gauge and a simple canonical framework. We then
discuss examples for the quantum states of the field and the properties of vacuum
fluctuations.

2.1 Canonical quantization

2.1.1 Fields

Maxwell equations. We want to quantize the vacuum Maxwell equations for
the electromagnetic field. With a given charge and current density, these read

∇ ·B = 0 ε0∇ · E = ρ

∇× E + ∂tB = 0 ∇×B− 1

c2
∂tE = µ0j (2.1)

Introducing the scalar and vector potentials via

B = ∇×A (2.2)

E = −∇φ− ∂tA, (2.3)

the left column of (2.1) is identically fulfilled. The Coulomb law then becomes

−ε0!φ− ε0∇∂tA = ρ (2.4)

If we impose the Coulomb gauge, ∇ · A = 0, the vector potential drops out and
the scalar potential is determined by the charge density alone:

−ε0!φ = ρ (2.5)
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In this gauge, the scalar potential is thus not a dynamical degree of freedom
of the field: its dynamics is ‘enslaved’ by that of the charges. This holds with
suitable boundary conditions such that the homogeneous equation !φ = 0 has
no nontrivial solutions. In free space, with φ(x→∞) → 0, we get

φ(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′| (2.6)

which is a superposition of well-known Coulomb potentials.

Wave equation. We are left with the wave equation for the vector potential

∇× (∇×A) +
1

c2
∂2

t A = µ0 (j− ε0∂t∇φ) ≡ µ0j⊥. (2.7)

On the right hand side, we have introduced the ‘transverse current’. Its diver-
gence is zero because of Eq.(2.5) and charge conservation:

∇ · j⊥ = ∇ · j + ∂tρ = 0. (2.8)

The name ‘transverse’ comes from the fact that in spatial Fourier components, the
current j⊥(k) must be perpendicular to k. One also says that the vector potential
in the Coulomb gauge is transverse because ∇ · A = 0. The transversality of
the source term in (2.7) ensures that if A is transverse at one time, it is also
transverse at all later times.

Conservation laws. Charge: ∂tρ +∇ · j = 0.
Energy (Poynting theorem):

∂tu +∇ · S = −j · E (2.9)

u =
ε0

2
E2 +

1

2µ0
B2 energy density (2.10)

S =
1

µ0
E×B Poynting vector (2.11)

Momentum (see exercise).

2.1.2 Matter

Let us consider that all matter is made from charged point particles with charges
eα and positions rα. The electric charge and current densities are then given by

ρ(x, t) =
∑

α

eαδ(x− rα(t)), j(x, t) =
∑

α

eαvα(t)δ(x− rα(t)) (2.12)
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The sum runs over all the particles. Charge conservation is ensured provided
that ṙα = vα.

The point charges are thus the ‘sources’ for the electromagnetic field. But
their motion is also influenced by the fields via the Newton-Lorentz equations:

d

dt

mαvα√
1− v2

α/c2
= eα (E(rα) + vα ×B(rα)) (2.13)

We use a relativistic framework here, and with the Lorentz factor, the time
derivative is actually the one for the relativistic particle momentum. Note that
in these equations, the coordinate rα enters generally in a nonlinear way. This
differs from the Maxwell equations that are linear in the fields and potentials
and whose solutions are linear in the charge and current distributions. (The su-
perposition principle can be applied, see Eq.(2.6).) All nonlinear effects in optics
can ultimately be traced back to the nonlinear response of matter to an applied
electromagnetic field.

Quantization. The theory outlined so far describes physics at the end of the
19th century. It is unable to describe a stable state of matter because of the
‘radiation catastrophe’: positive and negative charges circle around each other,
radiate electromagnetic waves and lose energy. Stable bound states exist only
when the particle dynamics is quantized—recall the hydrogen atom.

Let us recall the typical energy and length scales for the hydrogen atom. The
energy levels in Hydrogen are given by

En = −Ryd

n2
= − me4

2(4πε0)2h̄2

1

n2
(2.14)

where the Rydberg constant is 1 Ryd ≈ 13.6 eV. (In cgs units, drop the factor
(4πε0)2.) The size of the Hydrogen atom is of the order of the Bohr radius

a0 =
4πε0 h̄2

me2
(2.15)

The typical wavelength of an electromagnetic wave resonant with a transition in
Hydrogen is therefore of the order of

λ̄ =
h̄c

Ryd
=

2

αfs
a0 (2.16)

1

αfs
=

4πε0 h̄c

e2
≈ 137 (2.17)
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Here, αfs is the fine structure constant. Its inverse can be understood as a mea-
sure of the speed of light in ‘atomic units’ (the natural units for the Hydrogen
problem). The value 1/αfs ≈ 137 is fairly large. This means two things:

— the size of the hydrogen atom is small compared to the wavelength of
resonant radiation: the Lorentz force (2.13) has therefore only a weak
dependence on rα;

— the typical velocity of an electron in the Hydrogen atom is in the non-
relativistic regime: we can therefore use non-relativistic mechanics to de-
scribe the matter response.

This will justify several approximations for the atom-light interaction that we are
going to make in the rest of the lecture.

2.1.3 Lagrange-Hamilton formulation

Lagrangian. We now proceed to quantize the wave equation (2.7) in the
‘canonical way’. The first step is to guess the corresponding Lagrangian. A good
guess is the Lagrangian

L = −
∑

α

mαc2
√

1− ṙ2
α/c2 +

∫
d3xLF+I (2.18)

where the Lagrangian density for the field and its interaction with the electric
charges is given by

LF+I =
ε0

2

(
Ȧ +∇φ

)2
− 1

2µ0
(∇×A)2 − φρ + A · j. (2.19)

Via the Euler-Lagrange equations, one gets the Maxwell equations (2.5,2.7) for
the fields and the Newton-Lorentz equation (2.13) for the particles. Note that
the Lagrangian (2.18,2.19) is invariant under gauge transformations

φ (→ φ− ∂tχ, A (→ A +∇χ (2.20)

where χ(x, t) is an arbitrary smooth function. This gauge invariance is connected
to charge conservation.
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Coulomb gauge. We now proceed to specialize to the Coulomb gauge, simplify
the Lagrangian and derive the Hamiltonian. We start with the terms involving
the scalar potential in the Lagrangian (2.19). The mixed term is

Ȧ · ∇φ = ∇ · (Ȧφ)− φ∇ · Ȧ (2.21)

The first term is a divergence, and leads to a surface integral when integrated
over the volume. We adopt the usual boundary condition that at the (infinitely
remote) surface, the fields vanish: then this term is zero. The second term is
zero in the Coulomb gauge ∇ ·A = 0.

The term quadratic in the scalar potential is

(∇φ)2 = ∇ · (φ∇φ)− φ!φ = ∇ · (φ∇φ) + φρ/ε0 (2.22)

using the Laplace equation (2.5). The second term thus combines with the in-
teraction part −φρ in the Lagrangian that becomes −1

2φρ. This energy can be
interpreted as the Coulomb interaction energy between the charges:

VCoul =
1

2

∫
dx φρ =

1

2

∫
d3x d3x′

ρ(x)ρ(x′)

4πε0 |x− x′| (2.23)

=
1

2

∑

αβ

eαeβ

4πε0 |rα − rβ|
(2.24)

where the factor 1
2 ensures that all pairs of charges are only counted once. The

divergent self-interaction for rα = rβ also appears here. It is usually discarded.
The key point to note is that in the Coulomb gauge, the contribution of the scalar
potential depends only on the particle coordinates. It is not a proper degree of
freedom of the fields.

To summarize, in the Coulomb gauge, the Lagrangian can be split into the
following form:

L = −
∑

α

mαc2
√

1− v2
α/c2 − VCoul({rα}) +

∫
d3xL⊥F+I (2.25)

with
L⊥F+I =

ε0

2
Ȧ2 − 1

2µ0
(∇×A)2 + A · j. (2.26)

We have added the subscript ⊥ to remind ourselves that this is only valid if the
vector potential is transverse.
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Hamiltonian. For the Hamiltonian, we need the canonical momenta conjugate
to rα and A:

pα =
∂L

∂ṙα
=

mṙα√
1− ṙ2

α/c2
+ eαA(rα) (2.27)

Π(x) =
δL

δȦ(x)
= ε0Ȧ(x) (2.28)

The particle momentum contains the relativistic kinetic momentum and an elec-
tromagnetic contribution. For the field momentum, it looks as if ε0 where the
‘mass’ and Ȧ the velocity.

Functional derivative. In the field case, we have a continuous collection of
degrees of freedom, labelled by the space-points x. This requires a generalization
of the notion of a derivative to the infinite-dimensional case: the ‘functional
derivative’ δL/δȦ(x). It is the generalization of a gradient.

In mathematical terms, if we have a ‘functional’ L[A(x)], i.e. a mapping from
the space of vector fields into the real numbers, its functional derivative is de-
fined by the following approximation:

L[A(x) + δA(x)] ≈ L[A(x)]

+
∫

d3x
δL

δA(x)

∣∣∣∣∣
A(x)

δA(x) + O(δA2) (2.29)

Here, the second line is an example of a linear functional because the integral is
linear in δA(x). The function with which the small deviation δA(x) is weighted
under the integral defines the functional derivative. A mathematical theorem en-
sures that in a suitable space of functions, all linear functionals take this integral
form.

It is a simple exercise to derive with (2.29) expression (2.28) for the field
momentum Π. We shall return to a less trivial example below.

The Hamiltonian is given by

H =
∑

α

pα · ṙα +
∫

d3xΠ · Ȧ− L (2.30)

where the field part is the obvious generalization to a continuous set of degrees
of freedom. Putting everything together, we get

H =
√

[pα − eαA(rα)]2c2 + m2c4 + VCoul({rα})

+
∫

d3x

[
Π2

2ε0
+

(∇×A)2

2µ0

]

(2.31)
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where the interaction between matter and (transverse) field arises due to the
‘minimal coupling’ prescription only. (The term linear in j in the Lagrangian
cancels with the term linear in ṙα in (2.30).)

Canonical equations. The motion of particles and fields in the Hamiltonian
formalism can be described in a compact way in terms of Poisson brackets. We
discuss this in some detail because they provide another example of functional
derivatives and because they bear strong similarities to the commutators of the
quantum theory. In addition, it turns out to be tricky to get the transverse wave
equation (2.7).

The Poisson bracket provides the time evolution of any function Q (or func-
tional) of the coordinates and momenta by

Q̇ = {H, Q} (2.32)

where we define

{A, B} =
∑

α

∂A

∂pα
· ∂B

∂rα
− ∂A

∂rα
· ∂B

∂pα

+
∫

d3x

[
δA

δΠ(x)
· δB

δA(x)
− δA

δA(x)
· δB

δΠ(x)

]

(2.33)

Here, functional derivatives with respect to A and Π appear for the fields. The
Poisson bracket is antisymmetric in A and B and satisfies a ‘Jacobi identity’ (as
does the commutator).

By working out {H, r}, only the second term of the first line in (2.33) con-
tributes, and we get (after some calculations) the relativistic relation between
velocity and momentum, Eq.(2.27). This is left as an exercise. Similarly, one
gets Ȧ = Π/ε0.

A more complicated calculation is needed for Π̇ where we have to evaluate

− δ

δA(x)

√
[pα − eαA(rα)]2c2 + m2c4 (2.34)

We note first that
δA(rα)

δA(x)
= δ(rα − x) (2.35)

because the ‘evaluation functional’ A (→ A(rα) is of course a linear functional.
(For mathematicians, this property defines the δ-function.) To proceed, we use
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the usual rules of differential calculus and get

− δ

δA(x)

√
[pα − eαA(rα)]2c2 + m2c4 = δ(rα − x)

eα(pα − eαA(rα))c2

√
[pα − eαA(rα)]2c2 + m2c4

(2.36)
Performing the same calculations as for the particles’ equations of motion, this
can be written as the current density j(x).

The last term now involves the derivative

− δ

δA(x)

1

2µ0

∫
d3x(∇×A)2 (2.37)

that we handle with the mathematical definition (2.29). Consider a small change
a(x) of the vector potential. To linear order, this gives a change

(∇× (A + a))2 − (∇×A)2 ≈ 2(∇× a) · (∇×A)

= 2∇ · [a× (∇×A)] + 2a · [∇× (∇×A)] (2.38)

the first term is a divergence and vanishes after integrating over all space. The
second one contains a multiplied with a weighting function so that we get

− 1

2µ0

δ

δA(x)

∫
d3x(∇×A)2 = − 1

µ0
∇× (∇×A) (2.39)

Putting everything together, we have for the equation of motion of the vector
potential:

Π̇ = ε0Ä = j(x)− 1

µ0
∇× (∇×A) . . . wrong (2.40)

which is nearly equivalent to the wave equation (2.7). The point is that the
source term is the ‘full current’, not its transverse part. This is actually an error
in our calculation because we did not take into account the fact that the vector
potential is restricted to be transverse.

A simple way to repair this is to use A⊥ in the Lagrangian (2.25) and the
Hamiltonian (2.31). Now, the link between A⊥ and the ‘full’ A is a linear func-
tional (actually, a linear projector). This can be seen in the following way: con-
sider an arbitrary A and perform a gauge transformation (2.20) to remove the
nonzero divergence. This fixes the ‘gauge function’ to satisfy

!χ = −∇ ·A (2.41)
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whose solution (vanishing at infinity) is given by a ‘superposition of Coulomb
potentials’:

χ(x) =
1

4π

∫
d3x′

∇′ ·A(x′)

|x− x′| (2.42)

where ∇′ means the gradient with respect to x′. After the gauge transformation,
the now transverse vector potential is given by

A⊥(x) = A(x) +
1

4π

∫
d3x′ [∇′ ·A(x′)]∇ 1

|x− x′| (2.43)

Now, ∇(1/r) = −∇′(1/r), and after one integration by parts we have

A⊥i(x) =
∫

d3x′ δ⊥ij(x− x′)Aj(x) (2.44)

where the so-called ‘transverse δ-function’ is given by

δ⊥ij(x− x′) = δijδ(x− x′) +
1

4π
∂′j∂

′
i

1

|x− x′| (2.45)

A careful evaluation of the second derivatives yields the explicit result

δ⊥ij(x− x′) =
2

3
δijδ(x− x′)− 1

4π

(
δij

r3
− 3

rirj

r5

)

, r = x− x′ (2.46)

By construction, the transverse δ-function acts like a usual δ-function on vector
fields that are already transverse. We can interpret it as the ‘unit operator’ in the
space of transverse vector fields.

Finally, if we write A⊥ in the Hamiltonian, the equations of motion for A⊥i(x)

lead to the following term

∫
d3x′

δH

δΠj(x′)

δA⊥i(x)

δAj(x′)
=

∫
d3x′

δH

δΠj(x′)
δ⊥ij(x− x′) =

(
δH

δΠ(x′)

)

⊥i

(2.47)

The functional derivative with respect to A makes the transverse δ-function ap-
pear. The integral over x′ then projects the functional derivative with respect
to Π into the transverse subspace. In this way, the time derivative of A⊥ is
transverse, as it should do in order to maintain the Coulomb gauge at all times.

The same procedure applies to the equation of motion for the field momen-
tum: the bottomline is that the source current j is ‘transversalized’, leading to
the correct wave equation (2.7).

27



2.1.4 Quantization

Mode expansion. The next step is to look for ‘normal modes’ of this field the-
ory. We first identify some general requirements for the modes. The passage
to plane waves is a little bit tricky and is treated in detail in Sec. 2.1.5. Note
that we ignore for the moment the matter-field coupling: wo focus on the field
Hamiltonian only.

We adopt the expansion
(

A(x, t)

Π(x, t)

)

=
∑

κ

fκ(x)

(
qκ(t)

pκ(t)

)

(2.48)

where the ‘mode functions’ fκ(x) carry the space dependence and the ‘coordi-
nates’ qκ(t) and ‘momenta’ pκ(t) the time-dependence.

The Coulomb gauge requires, of course, ∇ · fκ(x) = 0: the mode functions
must be transverse.

We want the Hamiltonian to adopt a simple form using these modes. The
space integral over Π2 becomes simple if we impose the modes to be orthogonal:

∫
d3x fκ(x) · fκ′(x) = Nκδκκ′ (2.49)

where Nκ is a normalization constant that we fix later. The momentum-part of
the Hamiltonian then becomes

1

2ε0

∫
d3xΠ2 =

∑

κ

Nκ
p2

κ

2ε0
(2.50)

Similarly, for the integral over (∇×A)2. Integrating by parts:
∫

d3x (∇× fκ) · (∇× fκ′)

=
∫

dA · [fκ × (∇× fκ′)] +
∫

d3x fκ · [∇× (∇× fκ′)] (2.51)

The volume integral, strictly speaking, must be evaluated over a finite volume
only, otherwise, we could not work with a discrete set of mode labels κ. The
boundary term can nevertheless be made to vanish if either (i) the mode func-
tion fκ or its curl (∇ × fκ′) is required to vanish on the boundary of the volume
or (ii) periodic boundary conditions on ‘opposite faces’ of a cubic volume are as-
sumed. The case (i) is appropriate for modes in a cavity with perfectly conduct-
ing boundaries: then, fκ is proportional to the electric field, and the integrand in
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Eq.(2.51) vanishes because the field is normal to the boundary. The case (ii) is
the favorite one for theorists because the mode functions can be taken as plane
waves. Note that the eigenfrequencies of the two cavities are not the same. We
ignore for the moment the complications of complex mode functions (see details
below and the exercises) and continue.

The volume integral in (2.51) is reduced to the orthogonality relation if we
require the mode functions to be eigenfunctions of the (vector) Helmholtz equa-
tion:

∇× (∇× fκ) = ε0µ0ω
2
κfκ (2.52)

(This equation is actually equivalent to the scalar Helmholtz equation for all
components of fκ because of transversality.)

With all these assumptions taken together, the Hamiltonian for the field takes
the form

HF =
∑

κ

[
Nκ

2ε0
p2

κ +
ε0

2
Nκω

2
κq

2
κ

]
(2.53)

We now fix the normalization to be Nκ = 1 and get a sum of harmonic oscillator
Hamiltonians, one for each mode κ with ‘mass’ ε0 and frequency ωκ.

Note: the construction of field modes is a ‘classical problem’ of electrody-
namics, it has nothing to do with quantum mechanics. The word ‘quantization
volume’ that is sometimes used (to ensure that the mode index κ is discrete) is
therefore misleading. Quantization is something different, as we shall see now.

Mode operators. Quantization proceeds by promoting the pκ and qκ to opera-
tors with the commutation relations

i

h̄
[pκ, qκ′ ] = δκκ′ (2.54)

The choice for this commutator is similar to the one for the particle coordinates
and momenta in ordinary quantum mechanics. So in the end, field quantization
is nothing else but ordinary quantization, once the dynamics of the field is re-
duced to a discrete set of ‘normal modes’. The procedure that we have followed
was first laid out by Dirac. It is called ‘canonical quantization’.

The commutator between the fields becomes
i

h̄
[Πi(x), Aj(x

′)] =
∑

κ

fκi(x)fκj(x
′) != δ⊥ij(x− x′) (2.55)

The last equality is obtained by applying the canonical quantization scheme di-
rectly to the fields, care being taken that the fields (operators) ‘live’ in the space
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of transverse vector fields (operators). It means that the mode functions f(x)

form a complete set of functions in the transverse field space. To implement this
equality, one takes in practice the limit of an infinitely large quantization volume
where the sum degenerates into an integral. With discrete functions, one can
actually represent only a ‘finite volume version’ of the transverse δ-function—
the one that comes by applying the finite volume boundary conditions to the
equation (2.41).

For the harmonic oscillator, creation and annihilation operators are a con-
venient tool to construct the Hilbert space of quantum states. In our context,
these operators, a†

κ and aκ, correspond to the ‘creation’ and ‘destruction’ of one
‘photon’. The mode coordinate and momentum operators are given by

qκ =

√
h̄

2ε0ωκ

(
aκ + a†

κ

)
(2.56)

pκ =

√
h̄ε0ωκ

2
i
(
a†

κ − aκ

)
(2.57)

where we continue to write ε0 for the oscillator mass and where the commutation
relation is [

aκ, a†
κ′

]
= δκκ′ (2.58)

The field Hamiltonian then takes the form

HF =
∑

κ

h̄ωκ

2

(
aκa

†
κ + a†

κaκ

)
=

∑

κ

h̄ωκ

(
a†

κaκ + 1
2

)
(2.59)

The last way of writing makes two essential things explicit:

— the energies (the energy eigenvalues!) of a given field mode are quantized
in units of h̄ωκ (a ‘photon energy’) and the ‘number of photons’ is repre-
sented by the operator a†

κaκ.

— The ground state of the field corresponds to the state |vac〉 such that
aκ|vac〉 = 0 for all κ. This is an energy eigenstate whose energy is infi-
nite, 1

2

∑
κ h̄ωκ, the sum over the ‘zero-point energies’ of all the modes.

To summarize, we give the mode expansions of the vector potential that we
have found

A(x, t) =
∑

κ

√
h̄

2ε0ωκ
fκ(x)

(
aκe

−iωκt + a†
κe

iωκt
)
. (2.60)
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We have used here the Heisenberg picture for the vector potential operator. From
the Hamiltonian (2.59), it is easy to show that the operator aκ(t) evolves with
a complex exponential e−iωκt. This is also called a ‘positive frequency operator’.
It can be shown that operators that destroy particles and lower the energy of a
quantum state are always positive frequency operators.

Plane wave modes. For completeness, we give here the plane-wave expansion
for the field mode functions. These are complex, and therefore they are normal-
ized according to ∫

d3x f∗κ(x) · fκ′(x) = δκκ′ (2.61)

instead of Eq.(2.49). This can be ensured with the choice

fκ(x) =
1√
V

uκe
ik·x (2.62)

where V is the volume of the box with periodic boundary conditions, k is a
discrete wave vector: it increases in steps of 2π/V 1/3 for a cubic box. And uκ

is a ‘transverse’ polarization vector with the property k · uκ = 0. There are
two mutually orthogonal choices of polarization for a given k. (These can be
complex, describing circular polarization.) The frequency of this mode is ωκ =

|k|/√ε0µ0 = c|k|, as can be seen from the Helmholtz equation (2.52). The
magnetic field is oriented along k× uκ ≡ (ωκ/c)vκ.

Finally, the quantized vector potential, electric and magnetic fields are given
in terms of the following plane wave expansion

A⊥(x, t) =
∑

κ

√
h̄

2ε0ωκV

(
uκe

i(k·x−ωκt)aκ + h.c.
)
. (2.63)

E⊥(x, t) =
∑

κ

√
h̄ωκ

2ε0V

(
iuκe

i(k·x−ωκt)aκ + h.c.
)
. (2.64)

B(x, t) =
∑

κ

√
h̄ωκµ0

2V

(
ivκe

i(k·x−ωκt)aκ + h.c.
)
. (2.65)

Sometimes, you may encounter these formulas without the factor i. Then the
operators iakλ are being used instead, but they have the same commutation rela-
tions. Note that Eq.(2.64) gives only the ‘transverse’ part of the electric field. The
‘longitudinal’ part, −∇φ, is determined according to (2.5) by the charge density.

Note: A useful shortcut to derive the prefactors is the following: for each
mode, match the energy density 1

2ε0E2 + (1/2µ0)B2 to the photon energy per
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quantization volume, (h̄ωκ/V )(a†
κaκ + 1

2). In free space, the electric and mag-
netic energy densities are equal. Average over the spatial oscillations in E2 for
simplicity.

Exercise. Show that the momentum of the field can be written as a sum over
modes as well. With plane wave modes, the momentum per mode is quantized
in units of h̄k, as expected. Arbitrary cavity modes involving sin or cos functions
are not eigenfunctions of the momentum operators, therefore their momentum
is not well-defined. A ‘cavity photon’ therefore does not have a well-defined
momentum.

Exercise. Write the equation of motion for a mode operator aκ and include
the source current. Solve it for known time-dependence of current.

2.1.5 Plane wave quantization

In many cases, plane waves are a more natural choice for the mode functions.
But they are complex, and this leads to some technical difficulties. We outline
below a quantization procedure that directly starts from plane waves.

Plane waves are an obvious choice in a box of volume V with periodic bound-
ary conditions. We can expand

A(x, t) =
∑

k

Ak(t)
eik·x
√

V
(2.66)

where the plane waves are normalized to unity in the (‘quantization’) volume V .
Some simple manipulations then lead to the Lagrangian

L =
ε0

2

∑

k

(
Ȧk · Ȧ−k − c2k2 Ak ·A−k + Ak · j−k

)
. (2.67)

This already decomposes into a sum over the wave vectors k. Only waves with
k and −k are coupled. We can also decompose the complex vector in a basis of
orthogonal polarization vectors (there are two of them with k ⊥ ukλ)

Ak =
∑

λ

ukλAkλ. (2.68)

For simplicity, we assume that the polarization vectors are real and ukλ = u−kλ.
The complex number Akλ still encodes two degrees of freedom that are related to
the plane waves with wave vectors k and −k. This is apparent from the relation

A∗
k = A−k (2.69)
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that follows from the fact that A(x, t) is real. We now make the decomposition

Akλ =
q1 + iq2√

2
, A−kλ =

q1 − iq2√
2

, (2.70)

where the indices kλ have been dropped just for the clarity of presentation. In
terms of these variables, the terms with k and −k combine to give a sum of two
harmonic oscillators:

Lk =
ε0

2

(
q̇2
1 + q̇2

2 − c2k2
(
q2
1 + q2

2

)
+ interactions

)
(2.71)

(Note that both k and −k give the same contribution.)

Quantization. Canonical quantization means that the coordinate q1 and its
canonically conjugate momentum

p1 =
∂L

∂q̇1
= ε0q̇1 (2.72)

are replaced by operators with the commutator [pα, qβ] = −ih̄ δαβ (α, β = 1, 2).
The Hamiltonian is given by

H =
1

2ε0

(
p2

1 + p2
2

)
+

ε0

2
c2k2

(
q2
1 + q2

2

)
+ interaction (2.73)

so that we are dealing with two uncoupled harmonic oscillators. We can use the
well-known results from the Quantum Mechanics lecture if we write ω = ck and
m = ε0. Here ω is really a frequency (the light frequency for a plane wave), and
m is not a mass because q is not a position coordinate, but has the dimensions of
a vector potential.

The quantization of the harmonic oscillator is most easily written down in
terms of the annhilation and creation operators aα and a†

α. These are dimen-
sionless quantities with commutator

[
aα, a†

β

]
= δαβ. They allow to represent

coordinates and momenta as

qα =

√
h̄

2ε0ω

(
aα + a†

α

)
, (2.74)

pα = −i

√
h̄ε0ω

2

(
aα − a†

α

)
. (2.75)

We thus get the following expansion of the vector potential

A(x) =
∑

k,λ

′
√

h̄

4ε0V ωk
ukλ

{(
a1 + a†

1 + i
(
a2 + a†

2

))
eik·x (2.76)

+
(
a1 + a†

1 − i
(
a2 + a†

2

))
e−ik·x

}
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The primed sum is to remind us that we sum only over ‘one half’ of k-space,
regrouping k and −k. We now introduce the operators

b1 =
a1 + ia2√

2
, b2 =

a1 − ia2√
2

. (2.77)

They also satisfy the commutation relations
[
bα, b†β

]
= δαβ and are therefore

equally well suited to represent the normal modes of the field. They have the
advantage that the plane wave expansion (2.76) can be written in the form

A(x) =
∑

k,λ

′
√

h̄

2ε0V ωk
ukλ

{
b1e

ik·x + b2e
−ik·x + h.c.

}
. (2.78)

We can now label the mode operators as b1 = akλ and b2 = a−kλ, so that the
summation can be extended over all k-space:

A(x) =
∑

k,λ

√
h̄

2ε0V ωk

{
ukλakλe

ik·x + h.c.
}

. (2.79)

This is the standard expansion of the vector potential in quantum electrodynam-
ics.

Interaction and free field Hamiltonian. The interaction Hamiltonian with the
transverse current takes the following form in the quantized theory:

HFA =
∫

d3xA(x) · j⊥(x, t) (2.80)

=
∑

kλ

√
h̄

2ε0V ωk

{
akλukλ · j∗⊥,k(t) + h.c.

}
, (2.81)

where j⊥,k(t) is the spatial Fourier transform.
The dynamics of the field itself is generated by the well-known collection of

harmonic oscillators:
HF =

∑

k,λ

h̄ωk

(
a†
kλakλ + 1

2

)
. (2.82)

In the present context, we treated the current density as an ‘external’, given func-
tion with an explicit time-dependence. For this reason, there is no Hamiltonian
required for it. If the motion of the charges is quantized as well, one needs, of
course, an ‘atomic’ Hamiltonian to generate their dynamics.
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Field commutators. From the mode expansions (2.79, 2.64, 2.65) and the
commutation relations between the annihilation operators, one can compute the
commutator between the electric and magnetic fields. In the Lagrangian descrip-
tion, one finds already that the vector potential and the electric field are (up to
a factor −ε0) canonically conjugate variables. This is only true in the space of
‘transverse vector functions’ (fields with zero divergence), however. In the quan-
tized theory, the corresponding commutator is

[Al(x, t), Em(x′, t)] =
ih̄

ε0
δ⊥lm(x− x′) (2.83)

where δ⊥lm is the ‘transverse δ-function’ defined in Eq.(2.45). As discussed above,
this distribution acts like a δ-function on fields with zero divergence, and projects
an arbitrary vector field F on its transverse part F⊥

F⊥
l (x) =

∫
d3x′ δ⊥lm(x− x′) Fm(x′) (2.84)

By definition, the transverse part has zero divergence, ∇·F⊥ = 0. The projection
is most easily constructed in Fourier space

F⊥
j (x) =

∫ d3k

(2π)3

k2δjl − kjkl

k2
F̃l(k) eik·x (2.85)

where F̃(k) is the spatial Fourier transform of F(x). This relation allows to
deduce explicit expressions for the transverse δ-function.

Note that in the wave equation (2.7) for the vector potential, we have an
alternative relation between the current density j and its transverse part:

j⊥ = j− ε0∂t∇φ,

The ‘longitudinal part’ that is subtracted here is thus related to the electrostatic
field created by the corresponding charge density. More details are discussed in
the exercises.

2.2 Photons and the quantum vacuum

2.2.1 ‘Photons’

The present quantized description of the electromagnetic field allows us to give
a more precise meaning to the word ‘photon’. A photon is an excitation of a mode
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of the field. We have seen that the quantized field reduces to a collection of har-
monic oscillators, one for each mode. As we know from the harmonic oscillator,
its stationary states are labelled by non-negative numbers n = 0, 1, . . .. One says
that in these states, the mode contains ‘n photons’. The creation operator a†

whose action on these states is a†|n〉 ∝ |n + 1〉, thus ‘creates one photon’. This
picture is consistent with the assumption (dating back to Einstein (1905)) that
photons correspond to ‘energy packets’ of h̄ωk of the electromagnetic field. If a
plane wave mode expansion is used, we can also say that the momentum of a
photon is h̄k, as we know from de Broglie (1926) or from the Compton effect.

It is however possible to use different mode expansions for the same field.
For example, we could have used an expansion in terms of spherical vector har-
monics which differs from the plane wave expansion by a (infinite-dimensional)
unitary transformation. A single-photon state in the plane wave basis thus be-
comes a superposition of single-photon states in infinitely many spherical modes.
Conversely, a ‘photon’ in this description would not correspond to a plane wave
(its momentum would not be h̄k), but it would have a definite angular mo-
mentum with respect to the origin. It is even possible to define photons that
are wavepackets localized in time, by superposing plane waves with neighbor-
ing frequencies. This picture allows to describe experiments with ‘single-photon
pulses’. We refer to the exercises to look at these properties in more detail.

Finally, we precall that the computation of a suitable set of mode functions
is a ‘classical’ problem: no quantum theory is needed to state it. Using a cubic
‘quantization’ box, one can show that the plane waves with wave vectors k =

(2π/L)(nx, ny, nz)T (ni ∈ ) are orthogonal with respect to the scalar product
∫

L3
d3xF∗(x) ·G(x). (2.86)

This is clear for different wave vectors, k .= k′. But for a given k, one can also
find two orthogonal polarization vectors ε1,2 that give orthogonal modes (the
scalar product ε∗1 · ε2 is zero). The corresponding magnetic field mode functions
are also orthogonal. The electrodynamics becomes a ‘quantum’ theory only when
the amplitudes of the mode functions become suitably normalized operators.

2.2.2 The Fock-Hilbert space

The Hilbert space of the quantized field is constructed from the mode operators
aκ and a†

κ. The state of lowest energy is called the ‘vacuum state’, |vac〉 or |0〉:

aκ|vac〉 = 0 (2.87)
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The ‘one-photon sector’ is spanned by the infinitely many states with one photon
per mode

|1κ〉 = a†
κ|vac〉 (2.88)

. . . and so on. A typical state can be labelled by its ‘occupation numbers’
|n1, . . . nκ, . . .〉 = |{nκ}〉, it contains nκ photons in the mode κ. The so-called
Fock-Hilbert space is generated by taking linear combinations of these basis vec-
tors with complex coefficients. From linear combinatinons with a finite number
of terms, one completes the space by limiting procedures with respect to a suit-
able topology (related to the usual scalar product). Since the field theory ulti-
mately contains a infinitely many modes and even a continuum, the topological
structure can be quite intricate.

The field operators (vector potential, electric and magnetic fields) act be-
tween the N - and N ± 1-photon sectors via the ladder operators aκ and a†

κ they
contain. Their expectation values in the state |{nκ}〉 are thus zero. To get a
nonzero expectation value, one must construct superpositions of number states
with different particle numbers. These states are not stationary in general. In
quantum optics, an example of such states are the coherent states, useful to de-
scribe classical fields or to approximate a laser field. In high-energy physics, one
usually discards such superpositions by a ‘super-selection rule’: one argues that
for massive particles, the rest mass is so large that the relative phase between
the components that differ in particle number varies so rapidly that one cannot
distinguish, in practice, between a superposition state and a mixed state (to be
described by a density matrix, see below).

2.2.3 Vacuum fluctuations

In the vacuum state, the expectation value 〈E(x, t)〉 = 〈vac|E(x, t)|vac〉 = 0

because aκ annihilates the vacuum state and a†
κ can be made to act to the left on

the vacuum state which is annihilated. Note. The same is true for any stationary
(or number) state, see Sec. 2.2.2 below.

The vacuum fluctuations become visible in the next moment of the field: for
a given mode κ,

h̄ωκ

2ε0
〈(fκ(x)a(t) + h.c.)2〉 =

h̄ωκ

2ε0
|fκ(x)|2〈aκ(t)a

†
κ(t)〉 =

h̄ωκ

2ε0
|fκ(x)|2(2.89)

in the last step, we have used that aκ(t) = aκ(0) e−iωκt. In the case of plane wave
modes, we have |fκ(x)|2 = 1/V . The sum over wave vectors k and polarization
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indices λ can be written in the form

〈E2(x, t)〉 =

∞∫

0

dω

2π

h̄ωκ

2ε0
ρ(ω) (2.90)

where ρ(ω) is the so-called ‘local density of modes’ (per unit frequency and unit
volume):

ρ(x; ω) = 2π
∑

κ

|fκ(x)|2δ(ω − ωκ) =
2π

V

∑

κ

δ(ω − ωκ) (2.91)

For the plane wave modes, ωκ only depends on the magnitude of k, and in the
continuum limit,

∑

k

= V
∫ d3k

(2π)3
(2.92)

we get after a simple integration

ρ(ω) =
2

π

ω2

c3
(2.93)

The full vacuum fluctuation of the electric field is then infinite

〈E2(x, t)〉 =
h̄

πε0c3

∞∫

0

dω

2π
ω3 (2.94)

because the integral diverges at the upper limit. This correlates with an infi-
nite electromagnetic energy density in vacuum (multiply with ε0/2 and add the
magnetic component, which doubles the result). This “infinite vacuum energy”
is one of the unresolved problems in physics. “Intuitive cutoffs” at short wave-
lengths, for example, at the Planck scale (10−35 m) give a finite energy density,
but with a value that differs by something like 100 orders of magnitude from
the energy density associated with cosmological observations (including “dark
energy”, “cosmological constants” and so on).

Exercise. Find a cutoff such that the vacuum energy density equals the ‘crit-
ical density of the Universe’ (the critical mass density is roughly 10−29 g/cm3,
given the current expansion rate of the Universe.)

A finite value can be found, if we compute an autocorrelation function of the
electric field. A similar calculation gives

〈E(x, t) · E(x, t′)〉 =

∞∫

0

dω

2π

h̄ωκ

2ε0c3
ρ(ω) e−iω(t−t′) (2.95)
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This leads to the integral representation of the Γ-function in the complex plane
and finally to

〈E(x, t) · E(x, t′)〉 =
3h̄

π2ε0c3 τ 4
(2.96)

which is finite for all τ = t− t′ .= 0. For any finite value of τ , the electric vacuum
energy density is thus of the order of h̄ωτ/λ3

τ with the characteristic frequency
ωτ = 1/τ and wavelength λτ = cτ .

2.2.4 Casimir energy

The Casimir force is the attraction between two metallic mirrors placed in vac-
uum. It is interpreted in terms of the change in the zero-point energy (the famous
1
2 h̄ω of the harmonic oscillator ground state) induced by the presence of the mir-
rors. We give here an sketch of the calculation done by Casimir around 1948
[Proc. Kon. Ned. Akad. Wet. 51 (1948) 793].

We consider the ground state energy of the multi-mode electromagnetic field

E0 =
∑

kλ

h̄ωkλ

2

that is of course infinite and compare the cases of a planar cavity formed by two
mirrors (distance L) and empty space (i.e., two mirrors infinitely apart). In the
first case, we have standing wave modes between the mirrors with a frequency

ω(cav) = c
√

K2 + k2
n, kn =

nπ

L

with K2 = k2
x + k2

y and n = 1, 2, . . ., while in empty space,

ω = c
√

K2 + k2
z

with −∞ < kz < ∞. We first compute the difference in the electromagnetic
mode density per volume AL where A is the ‘quantization area’ in the xy-plane.
We cheat with the polarizations and multiply by a factor 2:

ρL(ω) =
4π

AL

∑

K,n

δ
(
ω − c

√
K2 + k2

n

)

=
2

L

∞∫

0

KdK
∑

n

δ
(
ω − c

√
K2 + k2

n

)
(2.97)
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The integration over K can be performed with the substitution K (→ c
√

K2 + k2
n

and gives

ρL(ω) =
2ω

Lc2

∑

n

Θ(ω − ckn) (2.98)

where Θ is the step function. It arises because for a given n, there are no modes
with frequency smaller than ckn. The same calculation in the infinite volume
gives

ρ∞(ω) =
2ω

c2

∞∫

0

dkz

π
Θ(ω − ckz) (2.99)

The kz integral can of course be performed, but we keep it here to illustrate one
of the basic features of the Casimir calculation: the result originates from the
difference between a ‘discrete spectrum’ (the sum over the kn) and a continuum
(the integral over kz).

The Casimir energy is now found as the difference in vacuum energy per area
in the space of length L between the mirrors:

∆E = L

Ω∫

0

h̄ω

2
(ρL(ω)− ρ∞(ω)) (2.100)

We have introduced an upper cutoff frequency Ω because the integrals are likely
to diverge in the UV. One of the mathematical difficulties (that we are not going
to discuss here) is to what extent the results depend on the cutoff. At a suitable
stage of the calculation, we are going to take the limit Ω →∞, of course.

The ω-integrals can be performed before the sum over n (the integral over
kz), and one gets

∆E =
h̄

6πc2




&ΩL/πc'∑

n=1

(
Ω3 − (ckn)3

)
−

Ω/c∫

0

dkz

π

(
Ω3 − (ckz)

3
)


 (2.101)

where 0x1 is the largest integer smaller than x. Introducing the number N =

ΩL/πc and the dimensionless integration variable z = kzL/π, this can be written
in the form

∆E =
h̄cπ2

6L3




&N'∑

n=1

(
N3 − n3

)
−

N∫

0

dz
(
N3 − z3

)


 (2.102)

The difference in brackets is some magic number and equal to −1/120 in the
limit N →∞. (A proof is sketched below.) The Casimir energy of two mirrors is
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thus equal to

∆E = − h̄cπ2

720L3
(2.103)

so that the force per unit area is FC/A = −h̄cπ2/240L4: since the energy de-
creases as L → 0, the two mirrors placed in vacuum attract each other.

Note that this result is independent of the nature of the mirrors, as well
as their electric charge. The electromagnetic field only enters inasmuch as its
modes give a contribution to the energy of the vacuum state. Field theorists
have computed the contribution to the Casimir energy from the Dirac electron
field, for example. It is small if the mirror separation is large compared to the
Compton wavelength h̄/mc ≈ 2.5 pm — which is nearly always the case. The
Casimir energy, being attractive, is sometimes thought of a means to ‘stabilize’ a
classical model of the electron (a bag of charge) against the Coulomb repulsion.

Sum minus integral

We use a trick in the complex plane. There is a theorem for functions f and D

that are analytical in a domain limited by the integration contour C:

1

2πi

∮

C
dz f(z)

d

dz
log D(z) =

∑

n

f(zn) (2.104)

where the zn are the zeros of D in the interior of the contour. We will use
f(z) = N3 − z3 and choose D(z) such that it is zero for the values zn = n:
D(z) = sin(πz). The differentiation under the integral sign gives

N∑

n=0

(N3 − n3) =
1

2

∮

CN

dz (N3 − z3)
eiπz + e−iπz

eiπz − e−iπz
(2.105)

We chose an integration contour as shown in fig. 2.1 running from +N above the
real axis to 0 and going back to +N below the real axis (the sum over all positive
zeros of sin πz thus gives the sum on the left hand side). We are eventually
interested in the limit N → ∞. Make the following transformations on the
upper and lower part of the contour:

upper part:
eiπz + e−iπz

eiπz − e−iπz
= −1 +

2eiπz

eiπz − e−iπz

lower part:
eiπz + e−iπz

eiπz − e−iπz
= 1 +

2e−iπz

eiπz − e−iπz
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integration contour

deformed contour

Figure 2.1: Integration contour for (2.105).

The constants ±1 give for both the upper and lower path an integral over N3−z3

that can be combined into
N∑

n=0

(N3 − n3) =
∫ N

0
dz (N3 − z3) +

∮

C
dz (N3 − z3)

e±iπz

eiπz − e−iπz

In the second integral, the exponential takes the appropriate sign on the upper
and lower parts of the contour. The first integral on the right hand side is exactly
the integral that we have to subtract in Eq.(2.102). The upper and lower parts
of the contour can now be shifted onto the (positive or negative) imaginary
axis because the integrand has no singularities (these are located on the real
axis only). The quarter-circle with radius |z| = N contributes only a negligible
amount because of the e±iπz.

Choosing z = ±it on the imaginary axis, we get
∮

C
dz (N3 − z3)

e±iπz

eiπz − e−iπz

= −i
∫ ∞

0

dt [N3 − (it)3] e−πt

e−πt − eπt
− i

∫ ∞

0

dt [N3 − (−it)3] e−πt

eπt − e−πt

= −2
∫ ∞

0

dt t3

e2πt − 1

Note that the imaginary parts of the two integrals that involve N3 cancel each
other: we have finally eliminated the cutoff.

You have encountered the last integral in the context of blackbody radiation.
Changing to the integration variable t′ = 2πt, the integral gives 1/240, so that
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we have in the end

lim
N→∞

(
N∑

n=0

(N3 − n3)−
∫ N

0
dz (N3 − z3)

)

= − 2

240
= − 1

120
(2.106)

as announced in the text.

2.3 Master equations in quantum optics

2.3.1 Idea

A master equation describes the time evolution of a quantum system beyond
the Schrödinger equation. It applies to “open systems” or systems for which
the Hamiltonian is not completely known. Master equations are the quantum
analogue of kinetic theories that describe the dynamics of a system including
different dissipative effects. One can thus follow the approach of the system
towards thermal equilibrium.

In quantum optics, the “system” can be an atom, a collection of atoms, or a
field mode in a cavity. The system is “open” because it interacts with the “rest
of the world”, manifest via a continuum of quantized field modes. An atom
decays irreversibly by emitting a photon into previously empty vacuum modes.
This phenomenon of “spontaneous emission” does not allow for a description in
terms of a Hamiltonian. In fact, the state of the atom does not remain pure,
and entropy increases because the photon can be emitted into any direction of
space. A cavity mode decays because photons escape through the cavity mirrors,
effectively becoming excitations of the “modes outside the cavity”. Alternatively,
the field energy can be absorbed by the material making up the mirrors.

We focus first on the derivation of a master equation for a two-level atom.
We shall find from the general theory two results: (1) the rate of spontaneous
emission of an electronically excited state and (2) Glauber’s formula for the sig-
nal of a photodetectors in terms of normally ordered correlation functions of the
electric field operator.

Time scales

The derivation builds on the following hierarchy of time scales:

2π

ωA
≤ τc 3

2π

Ω
∼ 1

γ
(2.107)
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where the shortest time scale is the optical period of the light field that is near-
resonant with the atomic transition frequency ωA. This is typically smaller than
a few fs (femtoseconds) (in the visible range).

The “correlation time” τc of the electromagnetic field describes qualitatively
the time interval over which the quantum fluctuations of the electromagnetic
field (that couple significantly to the atom) are “smooth”. Two electric field
measurements are not significantly “similar” if they are taken at intervals larger
than τc. We give an estimate below, it turns out to be a few times larger than the
optical period.

The third time scale is the Rabi period that scales with the inverse of the Rabi
frequency of a laser. This depends of course on the laser power (and the atomic
transition dipole), but typical values are in the 1–10 ns (nanoseconds) range.
Note that this is much longer than the optical period and the field correlation
time.

The last time scale is the lifetime of the excited state of the atom, inversely
proportional to the spontaneous decay rate γ. This is typically in the 1–10 ns
range as well, depending on the atom.

We thus have a situation similar to “Brownian motion”: the atom is “shaken
around” by the vacuum field fluctuations that vary much faster than the typical
dynamics for the atomic state (Rabi oscillations, spontaneous decay). The master
equation takes advantage of this separation of time scales to find an equation
of motion that can be applied on “slow time scales”. As a result, one gets a
single equation that describes both, the “Hamiltonian” effects of a laser (Rabi
oscillations) and the “dissipative / friction” effects due to vacuum fluctuations.

Hamiltonian

Two-level atom, field, and electric dipole interaction:

H =
h̄ωA

2
σ3 +

∑

k

h̄ωka
†
kak +

∑

k

h̄
(
g∗ka

†
kσ + gkσ

†ak

)
(2.108)

neglect the zero-point energy of the field. Coupling constant h̄gk = −deg ·
fk(xA)(h̄ωk/2ε0)1/2 with the mode function fk(x) evaluated at the position of the
atom. Sometimes called ‘vacuum Rabi frequency’.

In the following, we also use the (re-scaled) electric field operator

E(t) =
∑

k

gkak(t) + h.c. (2.109)
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Field correlation time

To get an estimate of the field correlation time, we compute the two-time corre-
lation (or coherence) function

C(τ) = 〈E(t + τ)E(t)〉 (2.110)

If we use the coupling constants gk to write the mode expansion of the quan-
tized field (this is equivalent to re-scaling the electric field so that it has units of
frequency), we get

〈E(t + τ)E(t)〉 =
∑

k

|gk|2〈ak(t + τ)a†
k(t)〉

=
∑

k

|gk|2 e−iωkτ (2.111)

An explicit calculation using the mode amplitudes in free space leads to an inte-
gral of the form

C(τ) ∼
∞∫

0

dω ω3 e−iωkτ (2.112)

which looks like a third derivative of a δ-function in τ . Well, not exactly since
the integrations starts at ω = 0. Generalizing to finite temperature, the Fourier
transform of the correlation function (2.112) becomes

C(ω) ∼ ω3n̄(ω) =
ω3

exp(h̄ω/kBT )− 1
(2.113)

The sign convention of the Fourier transform is chosen here such that ω > 0

corresponds to photon numbers a†a (‘normal order’), while at ω < 0, the anti-
normal order aa† is picked. See Fig.2.2: the spectrum is proportional to −ω3

for negative frequencies, −ω 5 kBT/h̄. Near zero frequency, it has a quadratic
behaviour, at positive frequencies, a maximum near ω = 2kBT/h̄ (Wien displace-
ment law) and an exponential decay for ω 5 kBT/h̄.

Actually, we forgot one thing in this estimate: the Hamiltonian we start with
is only valid for field modes k near-resonant with the atomic transition, ωk ∼ ωA.
It thus seems reasonable to restrict the frequency integral in Eq.(2.112) to an
interval around ωA, with a width ∆ω that is typically smaller than ωA.

Now, from the properties of the Fourier transformation, we know that the
correlation function C(τ) given by the integral (2.112) has a “width in time”
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Figure 2.2: Spectrum C(ω), Eq.(2.113), of the radiation field (normal order) at
finite temperature. The frequency is plotted in units of kBT/h̄. The dashed lines
are ω2 and −ω3.

given by ∆τ ∆ω ∼ 1. Since this width is precisely the definition of the correlation
time, we have

1

ωA
≤ 1

∆ω
∼ τc. (2.114)

Typical value: a few 10 fs.

2.3.2 Evolution of the atomic operators

We shall work in the Heisenberg picture. Note that operators describing different
degrees of freedom (field, atom) commute at equal times.

Atomic dipole

“eliminate” the field operators by solving their equation of motion:

dak

dt
=

i

h̄
[H, ak] = −iωkak − ig∗kσ (2.115)

ak(t) = ak(0) e−iωkt − ig∗k

t∫

0

dt′ σ(t′) e−iωk(t−t′) (2.116)

the “particular solution” contains the “past” of the atomic dipole operator σ(t′).
Insert this into the equation for σ. Let’s look at this equation first:

dσ

dt
=

i

h̄
[H, σ] = −iωAσ + i

∑

k

gk

[
σ†, σ

]
ak
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= −iωAσ + i
∑

k

gkσ3ak (2.117)

We see here that the two-level atom leads to nonlinear equations of motion: the
operator product σ3ak appears. For the moment, these operators commute (at
equal times). But we now want to insert the solution (2.116) for ak(t), and
the two terms that appear here do not commute separately with σ3. For this
reason, we take now a specific operator order (so-called “normal order”) where
the annihilation operators (ak or σ) act first. This is the order already used in
Eq.(2.117), and we thus get

dσ

dt
= −iωAσ + iσ3E0(t) +

t∫

0

dt′
∑

k

|gk|2e−iωk(t−t′)σ3(t)σ(t′) (2.118)

where we used the abbreviation

E0(t) =
∑

k

gkak(0) e−iωkt (2.119)

for the freely evolving electric field operator (positive frequency component only,
and re-scaled by the atomic transition dipole). In the integral over t′, we see that
the correlation function C(t − t′) appears, and using τ = t − t′ as integration
variable, we have

dσ

dt
= −iωAσ + iσ3E0(t) +

t∫

0

dτ C(τ)σ3(t)σ(t− τ) (2.120)

Now comes the key observation: under the time integral occur two very differ-
ent functions. The correlation function C(τ) is very narrow in τ . The atomic
operator σ(t − τ) contains a “fast free evolution” (generated by the first term
in its equation of motion), but once this is factored out, we anticipate that its
evolution is “slow”:

σ(t− τ) = e−iωA(t−τ)σ̃(t− τ) ≈ e−iωA(t−τ)σ̃(t) = e+iωAτσ(t) (2.121)

Here, we introduced temporarily the dipole operator σ̃(t′) (in an interaction pic-
ture).

The main benefit of this approximation is that only atomic operators at time
t appear in the equation of motion. The two-level commutation rules1 give

1A pedantic remark: operator products evolve as products under the Heisenberg equations of
motion. This is because taking the commutator with a product is compatible with the product
rule of (time) derivatives.
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σ3(t)σ(t) = −σ(t), and we end up with

dσ

dt
= −iωAσ + iσ3E0(t)− σ(t)

t∫

0

dτ C(τ) eiωAτ (2.122)

The upper integration limit t is actually the difference between our initial time
and the actual time where the equation of motion is computed. We now let this
time difference be much larger than the correlation time τc. This is consistent
with the assumption that the atomic dynamics is slow on the scale of the field’s
correlation time. Then the integrand is effectively zero at the upper limit, and
we get a constant complex number

γ + iδωA =

t)τc∫

0

dτ C(τ) eiωAτ =
S(ωA)

2
+ iP

+∞∫

−∞

dω

2π

S(ω)

ω − ωA
(2.123)

where S(ω) is the Fourier transform of the correlation function C(τ) and P
means the principal part of the integral.

Spontaneous decay rate and Lamb shift

Explicit calculation: spectrum of vacuum fluctuations

S(ω) = 2π
∑

k

|gk|2δ(ωk − ω) (2.124)

Take a plane wave expansion and sum over the polarization vectors ukλ in the
coupling constants gk

∑

λ

|deg · ukλ|2 = |deg|2 − |deg · k̂|2 (2.125)

where k̂ is the unit vector along k. This formula arises because the ukλ are
perpendicular to k. Integration over the angles of k gives

∫
dΩ(k̂)

(
|deg|2 − |deg · k̂|2

)
= 4π|deg|2 −

4π

3
|deg|2 =

8π

3
|deg|2 (2.126)

The integral over the length of k is trivial because of the δ-function in Eq.(2.124),
its length is fixed to |k| = ω/c. Putting everything together, we get

S(ω) =
2π

3h̄2 |dge|2
h̄ω

2ε0

8πω2

(2πc)3
(2.127)
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where the last factor is the density of field modes per dω and volume. We can
thus say that the spontaneously decaying atom is a “detector” for vacuum field
fluctuations. The decay rate γ

γ =
1

2
S(ωA) =

|dge|2(ωA/c)3

6πh̄ε0
(2.128)

is also called the “natural linewidth” of the atomic transition |g〉 ↔ |e〉 because it
gives the width in frequency of the spontaneous emission spectrum. In order of
magnitude, with |dge| ∼ ea0 (electron charge × atom size)

γ

ωA
∼ αfs(a0/λA)2 ∼ α3

fs (2.129)

with fine structure constant αfs = e2/4πε0h̄c ≈ 1/137.04 and wavelength λA of
resonant transition. Hence, indeed decay is “slow” on the scale of the optical
period.

Frequency shift δωA is related to asymmetry of vacuum spectrum around
the transition frequency. Interpretation from second order perturbation theory:
modes slightly below the atomic resonance, ωk ≤ ωA tend to push the level |e〉
upwards. Modes above resonance: push downwards. Null effect if spectrum is
flat.

Actual calculation requires UV cutoff ωuv and interaction Hamiltonian beyond
the resonance (rotating wave) approximation (Hans Bethe ∼ 1948, calculation
of the Lamb shift). Order of magnitude:

δωA ≈ γ log(ωuv/ωA) (2.130)

and a consistent cutoff is the electron rest mass, ωuv ∼ mec2/h̄. Hence compa-
rable to the natural linewidth. Note: relativistic theory required, where wave-
lengths up to electron Compton wavelength h̄/mec are involved. This goes be-
yond the “long wavelength approximation” because h̄/mec ∼ αfsa0 3 a0.

Atomic populations

Actually, we did not yet show that γ is the rate of decay for the excited state.
For this, we need the equation of motion for the occupations of the two energy
levels. This is described by the atomic operator σ3, also called the “inversion”
because 〈σ3〉 > 0 when the excited state is more occupied than the ground state.
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Heisenberg equation of motion

dσ3

dt
= +2i

∑

k

[
g∗ka

†
kσ − gkσ

†ak

]

= 2i
[
E†

0(t)σ − σ†E0(t)
]

− 2

t∫

0

dt′
[
C∗(t− t′)σ†(t′)σ(t) + C(t− t′)σ†(t′)σ(t)

]
(2.131)

where we inserted the formal solution for ak(t) and brought the operator prod-
ucts in normal order. We apply to the t′-integral the same prescription as before
and get

t∫

0

dt′
[
C∗(t− t′)σ†(t′)σ(t) + C(t− t′)σ†(t′)σ(t)

]

≈ (γ − iδωA)σ†(t)σ(t) + (γ + iδωA)σ†(t)σ(t) = γ(σ3(t) + ) (2.132)

where the frequency shift drops out. By construction, the operator σ3(t)+ gives
the occupation of the excited state. From Eqs.(2.131, 2.132), we can thus read
off the decay rate 2γ for the excited state population, while the ground state
remains stable.

Finally, the equation for the inversion operator becomes

dσ3

dt
= −2γ(σ3(t) + ) + 2i

[
E†

0(t)σ − σ†E0(t)
]

(2.133)

Combined with the equation of motion for the atomic dipole operator,

dσ

dt
= −(γ + iωA)σ + iσ3E0(t) (2.134)

we have thus found the “optical Bloch equations”.
In Eq.(2.134), we have made the replacement ωA + δωA (→ ωA for the atomic

frequency. This is called “renormalization”: we combine the shift induced by
the coupling to the vacuum field with the “naked” transition frequency into the
frequency that can be physically observed. Recall that in reality, we can never
“switch off” the coupling to the vacuum. Hence the “naked” two-level atom that
we started with is actually a theoretical artefact.
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2.3.3 Application 1: Bloch equations

Note that we did not specify yet the state of the light field: it is in fact encoded in
the operator E0(t) that depends on the initial field operators ak(0). Two examples
will be studied now, the first one being an atom driven by a laser field. We have
argued that to a good approximation, we can assume that the light field in a
coherent state |αL〉. We assume that at t = 0, the total system is in the product
state |ψ(0), αL〉 and take the expectation value of the Bloch equation. This gives
the dynamics of the Bloch vector as follows (optical Bloch equations in the proper
sense)

ds

dt
= −(γ + iωA)s + (i/2)s3Ω e−iωLt (2.135)

ds3

dt
= −2γ(s3(t) + 1) + i

[
Ω∗(t)eiωLts− s∗Ωe−iωLt

]
(2.136)

where Ω/2 = 〈αL|E0(0)|αL〉 is the (complex) Rabi frequency and ωL the frequency
of the laser mode.

These equations have time-dependent coefficients, but this can be removed
by making a transformation into a “rotating frame”. We make the replacement

s(t) (→ s(t)e−iωLt (2.137)

where the “new” s(t) satisfies Bloch equations with time-independent coefficients

ds

dt
= −(γ − iδ)s + (i/2)s3Ω

ds3

dt
= −2γ(s3(t) + 1) + i [Ω∗s− s∗Ω]

(2.138)

where δ = ωL − ωA is the “laser detuning”. Note that the symbols are not the
same throughout the books: the Rabi frequency Ω or the decay rate γ can differ
by a factor of 2 (or −2), the detuning can have the opposite sign.

The Bloch equations are a “workhorse” of atomic physics and quantum op-
tics. They are used to compute light absorption, excitation spectra, population
transfer, radiation forces on atoms etc. In the exercises, you compute the station-
ary state of the Bloch equations (attention with the different sign for δ: this one
should be correct)

sss =
−i(Ω/2)(γ + iδ)

γ2 + δ2 + Ω2/2
(2.139)

s3,ss =
−(γ2 + δ2)

γ2 + δ2 + Ω2/2
(2.140)
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Discussion: average atomic dipole operator (induced by laser field), average
inversion. Line broadening.

Exercise: total excitation N , does not commute when laser included. Expec-
tation value of Ṅ in stationary state, interpretation as total scattered intensity.

Exercise: spectrum of spontaneous emission, from formal solution. Need
formal solution of atomic dipole operator, Eq.(2.145).

2.3.4 Application 2: the Glauber photodetector

Roy Glauber (Nobel prize 2005) developped in the 1960s the theory of photode-
tection. His main result is that the signal of a photodetector is proportional to

I(t) ∝ 〈E(−)(t)E(+)(t)〉 (2.141)

where E(+)(t) is the positive frequency part of the electric field operator at the
detector position. This signal is constructed in such a way that if the field is in
the vacuum state, a detector gives no signal: perfectly reasonable. But due to the
presence of vacuum fluctuations (also nonzero expectation values of a product
of field operators!), not easy to implement in the theory.

We can recover the relevant features of Glauber’s theory with our two-level
atom. We shall actually show that under suitable approximations,

I(t) ∝ 〈E†
0(t)E(t)〉 (2.142)

where E(t) is the re-scaled electric field operator we introduced in Eq.(2.119).
Note that it contains positive frequency components only, and also only those
modes that are near-resonant with the atomic transition frequency ωA. Indeed,
Glauber’s model for a photodetector is a two-state system that is prepared in
the ground state. Incident light can be absorbed, leading to some population in
the excited state. This population is then “rapidly removed” from the system. A
physical example: the excited atom is ionized and the free electron moves away
(it cannot come back to recombine into the ground state). This is actually the
process that happens in a photomultiplier (“avalanche photodiode”).

So let us see what our Heisenberg equations (2.133, 2.134) give when the
atom in the ground state and the field is in an arbitrary state. We are interested
in the rate of change of the excited state population:

I :=
dpe

dt
=

d

dt
〈σ3 +

2
〉 =

1

2

d〈σ3〉
dt

(2.143)
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Since the atom is in the ground state, the operator σ3 + that appears in
Eq.(2.133) averages to zero. We are left with

I = i〈E†
0(t)σ(t)− σ†(t)E0(t)〉 (2.144)

and insert the formal solution for the atomic dipole operator [similar to
Eq.(2.116)]:

σ(t) = σ(0) e−(γ+iωA)t + i

t∫

0

dt′ σ3(t
′)E0(t

′) e−(γ+iωA)(t−t′) (2.145)

This gives

I = −
t∫

0

dt′
[
〈E†

0(t)σ3(t
′)E0(t

′)〉 e−(γ+iωA)(t−t′) + h.c.
]

=

t∫

0

dτ
[
〈E†

0(t)E0(t− τ)〉 e−(γ+iωA)τ + h.c.
]

(2.146)

where in the second line, we used the approximation that the inversion σ3(t′)

is evolving slowly and took its expectation value in the initial state (atom in
the ground state, not correlated with the field). If we also assume that the
expectation value evolves slowly with time t, 〈E†

0(t)E0(t − τ)〉 ≈ 〈E†
0(t + τ)E0(t)〉

[this is strictly true for a stationary field, but stationary fields do not give not very
interesting signals on a photodetector], we can combine the ‘+h.c.’ term into the
single integral

I =

t∫

−t

dt′〈E†
0(t)E0(t + τ)〉 e−γ|τ |+iωA)τ (2.147)

We observe that the photodetector signal is similar to the Fourier transform of
the two-time field correlation function. We can already confirm that the signal is
given by a normally ordered expectation value of field operator. Let us consider
two limits.

Narrow-band detector

If the decay time 1/γ is “very long” (compared to the correlation time of the
field), the photodetector signal is essentially given by the field spectrum, taken at
the transition frequency ωA. Indeed, the τ -integral in Eq.(2.147) picks from the
positive frequency operator E0(t + τ) those components that evolve like e−iωA)τ .
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Figure 2.3: Two-level model for a fast photodetector. The signal corresponds to a
sum of transition rates into all components of the upper state (quasi)continuum.

A narrow band photodetector is thus simply a ‘spectrometer’, and the quantity
it measures is the Fourier transform of the temporal correlation (or coherence)
function. Experimentally, this situation can be achieved by placing a narrow-
band frequency filter in front of a photodetector.

Fast detector

In some photodetectors, the excited state has a very short lifetime 1/γ. This
happens for example when the excited state actually ionizes and gives away its
electron. The excitation rate I is then actually an integral over all components
of the excited state ‘continuum’, as sketched in Fig.2.3. Under the integral, the
exponential e−γ|τ | becomes very short-ranged in τ , and we can make the replace-
ment

e−γ|τ | (→ 2

γ
δ(τ) (2.148)

This leads to Glauber’s formula

I(t) = η〈E†
0(t)E0(t)〉 (2.149)

where the expectation value of the instantaneous intensity operator E†
0(t)E0(t)

appears, in normal order, of course. The prefactor η actually is a number charac-
teristic for the detector and is called “quantum efficiency”. It must be determined
experimentally. If the intensity is scaled to “photons per second”, then η gives
the detection probability per photon, and I the “rate of detected photons per
second”.
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2.3.5 Application 3: intensity correlations

Problem: “resonance fluorescence” = two-level atom driven by a laser field.
Measurement: emitted light intensity 〈I(t)〉 and its correlations 〈I(t + τ)I(t)〉.

Stationary regime, Iss, normalized correlation function

g(2)(τ) =
〈I(t + τ)I(t)〉

(Iss)2
(2.150)

Properties g(2)(τ) ≥ 0 because intensity is positive. In the classical theory,
g(2)(0) ≥ 1 because average of square, 〈I2〉 ≥ 〈I〉2. If decorrelation at large
times, g(2)(∞) = 1.

Cauchy-Schwarz: 0 ≤ g(2)(τ) ≤ g(2)(0), will be violated in the quantum the-
ory: “non-classical light”.

Classical, chaotic light

Classical treatment, chaotic light (n randomly phased emitters, Poisson statistis-
tics with mean value n̄)

E = E0

n∑

α=1

eiϕα (2.151)

average intensity

〈|E|2〉 = |E0|2
∑

α,β

〈eiϕα−iϕβ〉 = |E0|2
∑

α

= n|E0|2 (2.152)

only terms with α = β contribute to the double sum, the others average to zero
because the relative phases are completely random.

Intensity variance, pick pairs of indices with equal phases

〈|E|4〉 = |E0|4
∑

α,β,γ,δ

〈eiϕα−iϕβ+iϕγ−iϕδ〉

= |E0|4(
∑

α

+
∑

α=β
"=γ=δ

+
∑

α=δ
"=β=γ

)

= |E0|4(n + 2n2) (2.153)

Hence for the normalized correlation function

g(2)(0) =
2n2 − n

(n)2
= 2 +

1

n̄
(2.154)
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Average of number of emitters with Poisson statistics assumed in the last
step. In the limit n̄ 5 1: “bunching” g(2)(0) = 2, larger than the asymptotic
(decorrelation) value g(2)(∞) = 1. Sketch. This will be violated in the quantum
theory of a single emitter: “anti-bunching”. The amount of violation is actually
a measure of how many quantum emitters contribute to the signal.

Two-level emitter

Quantum treatment. Interpret as two-time joint detection event, define via nor-
mal order (absorb one photon at time t, another one at t + τ):

g(2)(τ ; t) =
〈E†(t)E†(t + τ)E(t + τ)E(t)〉

〈E†(t)E(t)〉2 (2.155)

Link to atomic dipole operator, assuming that the laser field (the freely evolving
field operator) does not contribute to the detected signal:

g(2)(τ ; t) =
σ†(t)σ†(t + τ)σ(t + τ)σ(t)〉

〈σ†(t)σ(t)〉2 (2.156)

actually, the time argument is shifted by retarded light path r/c between atom
and detector. This is a common shift for all time arguments, however, and does
not appear in the final result that only depends on time differences (in the steady
state).

Direct calculation using the two-level annihilation operators: g(2)(0) = 0 be-
cause σ(t)σ(t) = 0 (‘nilpotent’ ladder operator if only two states on the ladder).
Hence “anti-bunching” g(2)(0) < g(2)(∞). Interpretation with photon emission
and excited state: after the emission of the first photon, the atom is in the ground
state and needs some time to get excited for the next emission. (Note: one also
sees why two or more atoms in the detection volume can “fill the antibunching
hole”.)

Result for the τ -dependence in the stationary regime:

g(2)(τ) = 1− e−3γτ/2
(
cos Ω′τ +

γ

Ω′ sin Ω′τ
)

(2.157)

with Ω′2+γ2/4 = Ω2 with Ω the laser Rabi frequency. See the Figure for weak and
strong drive. Note: this signal is fairly easy to measure: one just has to compute
the correlation function of the detected intensity with a good time resolution.
The τ -dependence (in particular for a weak drive, Ω 3 γ) provides a way to
measure the excited state lifetime 1/γ.
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Figure 2.4: Normalized intensity correlation function for the fluorescence of a
single two-level atom. The curves for τ < 0 are unphysical.

Sketch origin of this formula: another quantum regression formula. Work
out coupled equations for F, G,H with

g(2)(τ ; t) ∝ 〈σ†(t)σ†(t + τ)σ(t + τ)σ(t)〉 (2.158)

=
1

2
(pe(t) + G(τ ; t)) (2.159)

F (τ ; t) = 〈σ†(t)σ(t + τ)σ(t)〉 (2.160)

G(τ ; t) = 〈σ†(t)σ3(t + τ)σ(t)〉 (2.161)

H(τ ; t) = 〈σ†(t)σ†(t + τ)σ(t)〉 (2.162)

differential equation for the τ -derivative: take the operator-valued Bloch equa-
tions (2.133, 2.134), multiply with the operators at time t and take the aver-
age. Key assumption (approximation): for these multi-time correlation func-
tions, the master equation also holds. Initial values from operator products,
G(0; t) = −pe(t), F (0) = 0 = H(0).

Interpretation of intensity correlation function, identifying at time t

Schrödinger and Heisenberg picture and assuming the atom to be in the steady
state ρ(t) = ρss [πe = σ†σ is the projector onto the excited state]

g(2)(τ) ∝ tr
[
σ†(t)πe(t + τ)σ(t)ρss

]

= tr [πe(t + τ)|g〉〈e|ρss|e〉〈g|]

57



= tr (πe(t + τ)|g〉〈g|) pe(ss) (2.163)

In words: the probability to find the atom in the excited state (again) at time t+τ

after starting at t in the ground state. Note: this interpretation is particularly easy
for intensity correlations. For the dipole correlation function,

g(1)(τ) = 〈σ†(t + τ)σ(t)〉 (2.164)

this does not work because it involves the “skew” operator |g〉〈e| at the initial
time t. This is, of course, not a proper density operator.

We have seen here an example of a quantum regression formula2: two-time
averages depend on the time difference τ in the same way as one-time averages
depend on time t. This actually works only in the stationary regime and in the
memoryless case. It is a topic of current research whether a quantum regression
formula holds for “master equations with memory” (de Vega & Alonso, 2006;
Budini, 2008).

2.4 Cavity QED

So far, we have worked out the dynamics of an atom coupled to a continuum
of quantized field modes. We now consider the opposite case where a single
field mode dominates the atom-field interaction. This is part of the domain of
‘cavity QED’. The name is chosen because a single field mode can be isolated
experimentally using cavities with highly reflecting mirrors. In practice, even a
cavity sustains many modes (with discrete frequencies, however). We again have
to invoke a resonance approximation to single out one mode (that is closest in
frequency to an atomic resonance).

2.4.1 Jaynes–Cummings–Paul model

The Hamiltonian for a two-level atom coupled to a single mode has the following
simple form

H =
h̄ωA

2
σ3 + h̄ωa†a + h̄g

(
a†σ + σ†a

)
(2.165)

it is called the ‘Jaynes–Cummings–Paul model’3. The first term is the energy of
the atom with Bohr frequency ωA, the second term the cavity mode energy with

2Another example is the calculation of the emission spectrum of resonance fluoresence.
3Harry Paul, for many years leader of the group on non-classical radiation at Humboldt Uni-

versität zu Berlin, (East) Germany.
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the zero-point energy subtracted, the third term the coupling between the two,
characterized by a single coupling constant g. In typical experimental setups,
g = g(t) is time-dependent and describes how an atom moves spatially in and
out of the cavity mode function.

Time evolution

If the light field is described as a single quantized mode, an additional feature
occurs in the Rabi oscillations. The key point is that the coupling Hamiltonian,
g(a†σ + σ†a), now couples the states |g, n〉 and |e, n − 1〉 where n is the photon
number. These states are split (on resonance) in energy by the ‘Rabi splitting’
g
√

n. Recall that this splitting was |Ω| for a classical laser field, proportional to
the field amplitude. This is mimicked by the scaling with

√
n since the photon

number n is proportional to the field intensity. A special role plays the state
|g, 0〉: it has no partner with the atom excited and gives the ground state of the
JCP-model.

The solution to the Schrdinger equation can be copied from the results of the
first chapter, Eq.(1.30), for an initial condition of the form |g, n〉 (with n ≥ 1):

|ψ(t)〉 = cos(gt
√

n)|g, n〉 − i sin(gt
√

n)|e, n− 1〉 (2.166)

This applies for exact resonance ω = ωA between field mode and atom. If the
detuning ∆ = ω−ωA is nonzero, one gets a more complicated expression where
the ‘effective Rabi frequency’ Ωn =

√
∆2 + 4(gt)2n appears.

Exercise. Calculate the time evolution for an initially excited atom.

2.4.2 Collapse and revival

In each sub-space spanned by |g, n〉 and |e, n− 1〉, the system thus performs Rabi
oscillations with a slightly different frequency. If one starts with field state that
contains many different photon numbers (for example a coherent state), the Rabi
oscillations will still evolve at a mean frequency ≈ g

√
〈n〉, but at large times, the

oscillations will ‘get out of phase’ because of their frequency spread. This leads
to a ‘collapse’ of the Rabi oscillation amplitude, as illustrated in Figure 2.5. This
collapse happens on the time scale 1/g which is, for a coherent state, a factor√
〈n〉 times longer than the period of the initial Rabi oscillations. At still larger

times, of order
√
〈n〉/g, the amplitude of the oscillations ‘revives’ again. This is

due to the fact that the Rabi frequencies form a discrete set.
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Figure 2.5: Ground state occupation pg(t) for a two-level atom coupled to a
single mode, initially in the coherent state |α〉 with |α|2 = 7 (= average photon
number). Time is in units of the ‘single-photon Rabi frequency’ g.

Coherent field state

Let us look in more detail on the coherent state to understand this behavior.
Coherent states can be introduced already in elementary quantum mechanics
for the harmonic oscillator: they are eigenstates of the annihilation operator
a ∼ x + ip:

a|α〉 = α|α〉 (2.167)

where α ∈ is a complex eigenvalue. A simple calculation shows the following
expansion in the number state basis

|α〉 =
∑

n

e−|α2|/2 αn

√
n!
|n〉 (2.168)

Coherent state are not stationary, but they evolve in time in a simple way: they
remain coherent with a different parameter

|α〉 (→ |α(t)〉 = |α e−iωt〉 (2.169)
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where ω is the mode frequency. In the complex plane, the motion is thus similar
to the classical phase space plane where a harmonic oscillator also rotates. The
average photon number remains constant and equal to

〈α(t)|n̂|α(t)〉 = 〈α(t)|a†a|α(t)〉 = |α|2 (2.170)

Coherent states, being eigenstates of a non-hermitean operator, do not form a
complete set, but an overcomplete one. (They are not mutually orthogonal.)
Note also that eigenstates of the creation operator a† do not exist.

The ‘photon statistics’ of a coherent state is the probability pn of finding n

photons, hence

pn(α) = |〈n|α〉|2 = e−|α2| |α|2n

n!
(2.171)

This distribution is called the Poisson statistics. Its mean value is 〈n〉α = |α|2,
and the variance

(∆n)2
α = |α|2 = 〈n〉 (2.172)

The relative width ∆n/〈n〉 thus scales like 〈n〉−1/2 and becomes narrow as the
average photon number grows.

JCP dynamics

Let us compute as for the classical Rabi oscillations the probability of finding the
atom in the ground state. This is given by the sum over all photon numbers

pg(t) =
∑

n

|〈g, n|ψ(t)〉|2 (2.173)

The state vector is given by, using Eqs.(2.166, 2.168),

|ψ(t)〉 =
∑

n

e−|α2|/2 αn

√
n!

(
cos(gt

√
n)|g, n〉 − i sin(gt

√
n)|e, n− 1〉

)
(2.174)

We thus find from Eq.(2.173),

pg(t) =
∑

n

e−|α2| |α|2n

n!
cos2(gt

√
n)

=
1

2
+

1

2

∑

n

e−|α2| |α|2n

n!
cos(2gt

√
n) (2.175)

where the second term gives the oscillating population we are familiar with from
the Rabi flopping. The photon number enters via the scaling of the coupling: the
frequency 2g

√
n plays the role of the classical Rabi frequency.
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Note that if we start with a one-photon field at resonance, we reach the state
|e; 0〉 after some interaction time. We could therefore also take the atom in the
excited state and the field in the vacuum state – and find the so-called ‘vacuum
Rabi oscillations’. This is impossible in the classical theory. One says sometimes
that the vacuum fluctuations ‘stimulate’ the atom to emit a photon. This argu-
ment lies at the heart of the interpretation of spontaneous emission in terms of
the interaction with the quantized radiation field. The typical exponential decay
of the excited state, is however impossible to describe in this simple single-mode
model. One needs a mode continuum for that, as we have seen in Section ??.

The coherent state does not contain a definite number of photons – so what
happens to the Rabi oscillations? We calculate now that their amplitude gets
damped (‘collapse’) and may be re-born for some later time (provided no other
loss processes occur in the mean time).

Collapse

Eq.(2.175) for the population pg(t) looks like a difficult sum because of the
square root in the cosine. Let us therefore assume that our coherent state has
a large mean photon number, 〈n〉 = |α|2 5 1. Its relative fluctuations in the
photon number are then small, and we may expand the square root around the
mean photon number n̄:

2g
√

n ≈ Ω̄ +
g(n− n̄)√

n̄
+ O((n− n̄)2) (2.176)

where the first term is the ‘average Rabi frequency’ Ω̄ = 2g|α| = 2g
√

n̄. We
would like to replace the sum over n by an integral which is easier to solve. This
is justified if the interaction time t is sufficiently short so that

gt√
n̄
3 1.

In this limit, the argument of the cos changes little from one photon number to
the other (on the scale given by the period 2π of the cos), and the sum can be
seen as the Riemann sum approximation to an integral.

For the integral, we approximate the photon probability distribution |cn|2 by
a gaussian centred at n̄ with variance n̄ (since this is the photon number variance
for a coherent state) and get

pg(t) ≈ 1

2
+

1

2

∫ dn√
2πn̄

e−(n−n̄)2/2n̄ cos(Ω̄t + 2g2t(n− n̄)/Ω̄)
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=
1

2
+

1

2
cos(Ω̄t)e−(2g2t/Ω̄)2n̄/2

We thus see that the Rabi oscillations are damped with a gaussian factor

e−(g2t/g
√

n̄)2n̄/2 = e−(gt)2/2 (2.177)

on a timescale t ∼ 1/g given by the single-photon Rabi frequency. When the
coherent state contains a large (average) number of photons, this time scale is
much longer than the Rabi period itself.

Revival

At longer times, we cannot replace the sum by an integral because the number
states do not give Rabi phases gt

√
n that are close together: the cos in Eq.(2.175)

varies rapidly from one term in the sum over n to another. To find the first
instant of where something different may happen, we consider the time where
the coefficient of n − n̄ in the expansion (2.176) is such that adjacent photon
numbers have Rabi phases that differ by an integer multiple of 2π: the functions
cos gt

√
n then add up constructively, and we get a ‘revival’ of the Rabi oscillation

amplitude. This happens for the first time at the time given by

2π = 2gt
√

n + 1− 2gt
√

n ≈ gt√
n̄

⇒ trev = 2π

√
n̄

g
,

for large n̄, this happens way beyond the ‘short time regime’ we considered be-
fore.

To summarize, we have found the following hierarchy of timescales:

gt ∼ 1/
√

n̄ gt ∼ 1 gt ∼
√

n̄

Rabi flopping collapse revival

For strong coherent fields like laser beams (n̄ 5 1), the revival regime is difficult
to observe because the timescale is so long that other effects arise (phase fluc-
tuations of the laser, e.g.). Collapse and revival experiments are therefore most
easily done with few photon states (but with somewhat more photons than the
few-photon experiments described before). Do not forget that the field starts in
a coherent state that is easily prepared.

The exact summation of the ground state probability (2.175) is shown in
fig. 2.5 for a mean photon number n̄ = 7. Although the timescales are not well
separated, the gaussian decay gives a good approximation to the collapse. The
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revival does not revive the Rabi oscillation with unit amplitude because of the
breakdown of the expansion (2.176). Further revivals can be expected at integer
multiples of trev, but higher order terms in the sum are change their shape. (A
recent analysis can be found in Karatsuba & Karatsuba, J Phys A (2009).)
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