Einführung in die Quantenoptik II

Sommersemester 2020 Carsten Henkel

Übungsaufgaben Blatt 4

Ausgabe: 03. Juli 2020 Abgabe: 15. Juli 2020

Aufgabe 4.1 – Spectrum of Resonance Fluorescence (10 Punkte)

We shall see in the lecture that the field emitted by a two-level atom can be described by the positive-frequency field operator

$$E(\mathbf{r},t) \sim \frac{\mathrm{e}^{-\mathrm{i}\omega_L t} d_{ge} \sigma(t)}{r}$$
 (4.1)

where $\sigma(t) = \frac{1}{2}(\sigma_1(t) - i\sigma_2(t))$ is the lowering operator of the two-level system. (In the Schrödinger picture, $\sigma = |g\rangle\langle e|$.)

The light emitted by the atom is called *fluorescence* (or luminescence) and its spectrum is proportional to the Fourier transform of the atomic correlation function $C_{\sigma}(\tau) = \langle \sigma^{\dagger}(t+\tau)\sigma(t)\rangle$ with respect to τ . (We assume that t is large enough so that the system is in a steady state.) When this correlation is computed with the quantum regression formula, we introduce the *skew* density operator $\varrho(\tau|\sigma\rho_{\rm st})$ that evolves according to the master equation and from the initial condition $\varrho(0|\sigma\rho_{\rm st}) = \sigma\rho_{\rm st}$.

(1) Show that $\varrho(0)$ has the trace $(s_1 - \mathrm{i} s_2)/2$ and is described by the complex Bloch vector **S** with components (why is **S** complex?)

$$S_1 = \frac{1+s_3}{2}, \qquad S_2 = \frac{1+s_3}{2i}, \qquad S_3 = \frac{-s_1+is_2}{2}$$
 (4.2)

Here, $\mathbf{s}=(s_1,s_2,s_3)$ is the steady-state Bloch vector corresponding to ρ_{st} .

(2) The time evolution of the Bloch vector is given by the Bloch equations

$$\frac{dS_1}{d\tau} = -\Gamma S_1 + \Delta S_2 \qquad \qquad \frac{dS_2}{d\tau} = -\Delta S_1 - \Gamma S_2 - \Omega S_3
\frac{dS_3}{d\tau} = \Omega S_2 - \gamma (S_3 + \operatorname{tr} \varrho)$$
(4.3)

where Δ is the detuning, Ω the (real) Rabi frequency and Γ and γ the decay rates for coherences and populations. Argue that the stationary solution of these equations is given by $\varrho_{\rm st}=({\rm tr}\,\varrho)\rho_{\rm st}$. Check that in the stationary state $P_{\rm st}$, the expectation value of $\sigma^\dagger=(\sigma_1+{\rm i}\sigma_2)/2$ is given by

$$\operatorname{tr}(\sigma^{\dagger} P_{\mathrm{st}}) = \left| \operatorname{tr}(\sigma \rho_{\mathrm{st}}) \right|^{2} \tag{4.4}$$

What does this stationary value tell you about the behaviour of the correlation function $C_{\sigma}(\tau)$ as $\tau \to \infty$? What does this imply for the fluorescence spectrum? *Answer*: there is an "elastic" component in the spectrum that is monochromatic and centered at the driving laser frequency ω_L . Its power is proportional to Eq.(4.4).

(3) Eqs.(4.3) can be written as $\dot{\mathbf{S}} = -\mathbf{B}\mathbf{S} + \dots$ with a 3×3 matrix **B**. Show that the characteristic equation for its eigenvalues λ can be written as

$$(\Gamma - \lambda)^{2}(\gamma - \lambda) + \Omega^{2}(\Gamma - \lambda) + \Delta^{2}(\gamma - \lambda) = 0$$
 (4.5)

Solve this equation approximately in the two cases $|\Omega| \ll \gamma/2 < \Gamma$ and $|\Omega| \gg \Gamma$. It turns out that the real and imaginary parts of the eigenvalues λ describe the width and the position of spectral lines – what kind of behaviour for the fluorescence spectrum do you expect in the two cases?

Aufgabe 4.2 – Anti-bunching (10 Punkte)

The correlations of the fluorescence intensity I is related to the probability of detecting two photons, one at t and another one at the later time $t' = t + \tau$. According to Glauber's photodetector theory, the joint detection rate is proportional to the correlation function (time and normal order)

$$C_I(\tau) = \langle \sigma^{\dagger}(t)\sigma^{\dagger}(t+\tau)\sigma(t+\tau)\sigma(t)\rangle \tag{4.6}$$

where we have used Eq.(4.1) for the emitted field.

- (1) Construct with the regression approach a formula that gives this 'intensity correlation' in terms of a conditional density operator $P(\tau|\ldots)$ (different from the one used in Problem 4.1). Justify the wording "just after the time t, the two-level system is for sure in its ground state" and check that the initial state for $P(\tau|\ldots)$ is (nearly) an ordinary density operator.
 - (2) Show that for $\tau = 0$, $C_I(0) = 0$ and give an interpretation for this result.
- (3) In a classical description, the fluorescence intensity I(t) is proportional to $|d(t)|^2$ where d is a complex dipole amplitude. Show with the Schwarz inequality that in this picture, the correlation function satisfies

$$\langle |d(t)|^4 \rangle \ge \langle |d(t)|^2 |d(t')|^2 \rangle$$
 and $\langle |d(t)|^4 \rangle \ge \langle |d(t)|^2 \rangle^2$ (4.7)

where the averages are taken with respect to a probability distribution for d(t'). We assume that averages are stationary.

Hint. For real random variables, A, B, we have $0 \le \langle (A-B)^2 \rangle = \langle A^2 \rangle + \langle B^2 \rangle - 2\langle AB \rangle$ and $0 \le \langle (A-\langle A \rangle)^2 \rangle$.

For this reason, the quantum result $C_I(0) = 0$ is called "non-classical": it cannot be reproduced by replacing the quantum dipole operator σ by classical variables with whatever distribution function.