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Einführung in die Quantenoptik II
Carsten Henkel SS 2019

Die Vorlesung Quantenoptik II setzt den ersten Teil des Kurses aus dem
WS 2018/19 fort, kann aber auch unabhängig davon gehört werden. Die
benötigten Grundbegriffe (Wechselwirkung Licht-Materie, Quantisierung
des Strahlungsfelds) werden hier kurz wiederholt.

Ziel der Vorlesung ist Einführung in ein aktuelles Gebiet der Forschung
an Hand von einigen Schlüssel-Experimenten zu Licht und Photonen. Im
Vergleich zur Experimentalphysik wird etwas mehr Gewicht auf die the-
oretische Beschreibung und ihre physikalische Interpretation gelegt, die
Details werden aber mit den Hörern abgestimmt. Im vorläufigen Pro-
gramm sind um die Experimente herum verschiedene methodische Tech-
niken eingeplant, die diverse Aspekte für die Beschreibung von Photonen,
Lichtfeldern und ihrer Kopplung an Materie beleuchten. Hinweise zur Lit-
eratur und auf ein Skriptum sind auf dem web site der Quantenoptik in
Potsdam zu finden:

www.quantum.physik.uni-potsdam.de

1. Open system dynamics

– Completely positive maps (Kraus-Stinespring theorem & co)

– Lindblad master equation

– Quantum regression hypothesis

2. Quantum states of the radiation field

— coherent, squeezed, entangled

— quasi-probability distributions: P-, Wigner and Q-functions

3. Quantum Theory of Laser and Micro-Maser

— master equation for laser mode with losses and amplification

— dynamics in phase space: Fokker-Planck equation and phase dif-
fusion
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— two-time correlation functions, regression formula

— Schawlow-Townes limit for the frequency spectrum

4. Experiments with correlated light beams

— two photons at a beamsplitter: Hong-Mandel-Ou interference

— Einstein-Podolsky-Rosen paradox and quantum correlations

— nonlinear medium and squeezing interaction

— spectra of squeezed quadrature operators

— input-output formalism and quantum Langevin equation

5. Resonance Fluorescence

— physical interpretation of master (Bloch) equation

— spectra, correlation functions, regression formula

— Mollow triplet, particle-wave duality for photons

— intensity correlations and anti-bunching
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Chapter 1

Open system dynamics

Idea

We discuss in this chapter basic tools for the dynamics of an “open quantum
system” – where the Schrödinger equation alone is not sufficient because
the system exchanges energy and information with its environment. Start-
ing from a few physically well-motivated assumptions, we shall derive a
surprisingly precise characterization of the possible dynamics. The time
evolution of an open quantum system can be understood as a mapping
⇢̂(0) 7! ⇢̂(t) between density matrices. This mapping must satisfy some
constraints, for example, it must preserve the probability interpretation of
quantum mechanics. In addition, it seems reasonable that initial density
matrixes that are “mixtures” of pure states evolve in a linear way and re-
main mixtures.

1.1 Axiomatic foundations

We define a “dynamical map” T : ⇢(0) 7! ⇢(t) = T [⇢(0)] as a linear map
of density matrices to density matrices. Actually, we only need “convex
linearity” because this is the canonical way to generate mixed states:

T (
X

k

pk⇢̂k) =
X

k

T (⇢̂k), pk � 0,
X

k

pk = 1 (1.1)

but this construction is easily generalized to linear combinations with com-
plex coefficients.
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We start from the intuitive picture that T implements the time evolution
of the density operator to state the following, apparently obvious properties
for a “dynamical map” T .

Definition: dynamical map.

the map T : ⇢(0) 7! ⇢(t) = T [⇢(0)] is linear (clearly motivated by
convex sums as input states)

domain (Definitionsbereich) of the map T : all (initial) density opera-
tors ⇢(0)

the image ⇢(t) is a density operator: hermitean, non-negative, and of
trace unity. One calls the map itself therefore trace-preserving and
“positive”.

the map T is completely positive, as explained now.

“Complete positivity” means the following: imagine that we enlarge the
space on which ⇢ operates and extend T in the following way to “larger”
density matrices P. For factorized matrices, P = ⇢⌦ ⇢B, we set

(T ⌦ 1)(P) = T (⇢)⌦ ⇢B (1.2)

and extend this to arbitrary (“entangled”) operators P by linearity. We then
require that the extended map (T ⌦ 1) is positive for any dimension of the
extended space.

There are physical time evolutions that do not fit into this framework. For example, it
is possible that the initial density operator ⇢̂(0) for an open system does not contain
enough information about the system–environment correlations to predict the system’s
future. See Pechukas (1994).

At first sight, complete positivity looks as a quite natural condition, not a very strong
constraint. It reveals its full power as soon as non-factorized states P on the larger
Hilbert space (“entangled states”) enter the game.

1.2 Characterization of completely positive
maps

It may come as a surprising fact that these conditions already imply a very
special form for the dynamical maps: this is the
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Kraus-Stinespring representation theorem: All dynamical maps are of
the form

T (⇢) =
X

k

⌦k⇢⌦
†
k

(1.3)

with
P

k ⌦̂
†
k
⌦̂k = 1.

Note that this equation generalizes the unitary evolution that we re-
cover when the sum over the “Kraus operators” ⌦k contains only a single
term. Exercise: Eq.(1.3) defines a completely positive map and preserves
the trace of ⇢.

Sketch of a proof. Adapted from Chap. 4 in Quantum Computing Devices:
Principles, Designs and Analysis by G. Chen & al, Taylor & Francis 2006,
itself taken from Nielsen & Chuang, Quantum Computation and Quantum
Information (Cambridge University Press 2000).

You prove in the exercises that Eq.(1.3) defines a completely positive
map. The only tricky point is the following extension to density operators
P in a larger space

(T ⌦ 1)(P ) =
X

k

(⌦k ⌦ 1)P (⌦†
k
⌦ 1) (1.4)

where the factor ⌦1 provides the necessary extension to larger dimensions.
We now want to prove the converse. Consider the extended Hilbert

space H⌦H. Take a vector |�i 2 H⌦H and construct the operator

P = (T ⌦ 1)(|�ih�|) (1.5)

Since T is completely positive, and |�ih�| is a density operator, P is a (pos-
itive) density operator. Since P is hermitean, its spectral representation
exists and can be written in the form

P =
X

k

|'̃kih'̃k|. (1.6)

We have lumped the non-negative eigenvalues into the non-normalized
eigenvectors |'̃ki.

We now construct linear maps ⌦k on the system Hilbert space. Let
| i, |�i 2 H. Define the ket | ?i with respect to a basis {|ni} of H by
“taking the complex conjugate of the coefficients”, i.e.:

| ?i =
X

n

|nihn| ?i, hn| ?i ⌘ (hn| i)⇤ = h |ni (1.7)
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The Kraus operators are now defined via their matrix elements as

h�|⌦k| i = h�⌦  
?|'̃ki, h |⌦†

k
|�i = h'̃k|�⌦  

?i, (1.8)

where the adjoint operator is defined in the usual way. We use the notation
h�⌦ ?| for the tensor product between the bras (linear forms) h�| and h ?|.

Let us now analyze the following matrix elements of the image density
operator P , taking arbitary |�i, |�0i, | i 2 H

h�⌦  
?|P |�0 ⌦  

?i
=

X

k

h�⌦  
?|'̃kih'̃k|�0 ⌦  

?i from Eq.(1.6)

=
X

k

h�|⌦
k
| ih |⌦†

k
|�0i (1.9)

We now specialize to the following form for the vector |�i 2 H⌦H:

|�i =
X

n

|n⌦ ni (1.10)

(this vector is a so-called maximally entangled state on the product Hilbert
space). Its projector admits the following expansion

|�ih�| =
X

n,m

|n⌦ nihm⌦m|

=
X

n,m

(|nihm|)⌦ (|nihm|) (1.11)

in terms of skew operators |nihm|. It is quite astonishing that the full knowl-
edge about T can be obtained by applying its extension (Eq.(1.5) to this
single projector. We shall see in a moment that a dynamical map T (and
its extensions) can be defined on skew operators as well, Eq.(1.16). Taking
this for granted, we get

P = (T ⌦ 1)(|�ih�|) =
X

n,m

T (|nihm|)⌦ (|nihm|) (1.12)

Using the definition (1.7), we find that the matrix element of Eq.(1.9) be-
comes

X

n,m

(h�|⌦ h ?|) [T (|nihm|)⌦ (|nihm|)] (|�0 ⌦  
?i)

=
X

n,m

h�|T (|nihm|)|�0ihn| ihm| i⇤

= h�|T (| ih |)|�0i. (1.13)
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In the last step, we have used the expansion of | i in the basis {|ni}.
Combining with Eq.(1.9), we have shown that

h�|T (| ih |)|�0i =
X

k

h�|⌦
k
| ih |⌦†

k
|�0i (1.14)

Now, the vectors |�i, |�0i are arbitary and hence

T (| ih |) =
X

k

⌦
k
| ih |⌦†

k
(1.15)

Hence, we have proven the operator identity (1.3) for the special case of a
pure state ⇢ = | ih |. The proof is extended to a mixed state by decompos-
ing ⇢ into projectors | iih i| onto eigenvectors with non-negative weights
(eigenvalues) pi, and using the linearity of T .

To fill the gap, we need a prescription to apply a dynamical map to skew
operators. We assume that | i and �i are orthogonal and set

T (| ih�|) =
1

2
[T (⇢+1)� T (⇢�1) + iT (⇢+i)� iT (⇢�i)] (1.16)

⇢u :=
1

2
[(| i+ u|�i)(h |+ u

⇤h�|)] , |u| = 1

where T is applied to projectors onto superposition states of  and � with
suitably chosen phase factors u. For a complex linear map, Eq.(1.16) is
actually trivially satisfied, as a direct calculation shows. (See exercises.)

Last gaps to fill. Check that the Kraus operators resolve the identity,
P

k ⌦
†
k
⌦k = 1.

Remarks

• A map is completely positive if it is positive on the “doubled Hilbert
space”. This is actually all that we needed in the proof.

• If D is the dimension of the Hilbert space H, then there are at most
D

2 Kraus operators ⌦k. This is the maximum number of eigenvectors
of P with nonzero eigenvalue (the maximum rank of P ).

• The Kraus theorem provides us a characterization of all completely
positive maps. Current research is turned towards a similar result for
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“positive maps”. These maps, extended to the double Hilbert space,
may image density operators onto operators with negative eigenval-
ues. This is connected to the generation of entanglement between the
system and its “copy”.

• There are researchers who do not accept the requirement of complete
positivity (Pechukas, Phys Rev Lett 1994): they maintain that factor-
ized states actually never occur in Nature (there are always some
correlations or entanglement with the “rest of the world”). From
this viewpoint, the violation of complete positivity is related to the
fact that the (forgotten) correlations between the system and its en-
vironment are needed to construct the proper time evolution. In this
sense, time evolution need not be a (completely) positive map. A
pragmatic solution has been suggested by Shaji and Sudarshan, Phys
Lett A 2005) in: ‘Who’s afraid of not completely positive maps?’ One
may simply restrict the application of a given (approximate) dynami-
cal map to a subset of initial density operators where the map is com-
pletely positive. Examples where this is not the case have become
known under the name ‘initial slip’ Gnutzmann & Haake (1996).

• Current research is aimed at extending or exploiting the Kraus theo-
rem to master equations “with memory” (non-Markov case). At the
time of writing, there are a few generalizations attempted, but no
general result has been proven.

1.2.1 Remarks and examples

Choi matrix. The density operator P defined in Eq.(1.12) is called the
Choi matrix of the map T . The following re-formulation of the Kraus-
Stinespring theorem is called the Choi theorem: the map T is completely
positive if and only if its Choi matrix P is positive.

Random unitary. Imagine that you have a Hamiltonian H(x) that de-
pends on a “random parameter” x. It can take the values x = xk with
probability pk. This happens, for example, in your laboratory class when
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certain values of your apparatus are not well controlled. Then we can de-
fine the following “average density matrix” (denoted by the overbar) after
time evolution under the unitary operator U(x) = exp[�iH(x)t]:

⇢ 7! U(x)⇢U †(x) =
X

k

pkU(xk)⇢U
†(xk) (1.17)

Actually, from a quantum-mechanical perspective, this is the only way to
describe the “preparation procedure” that you implement with the non-
accurately known Hamiltonian. We observe that Eq.(1.17) is of the form of
the Kraus theorem, with ⌦k =

p
pkU(xk).

Stinespring dilation theorem. Formulation for a physicist: every com-
pletely positive map can be represented by a unitary map on a larger
Hilbert space, followed by a partial trace. The projection procedure in
the ‘system+bath’ approach is therefore also the only way to construct a
completely positive map.

The main idea is to collect the Kraus operators ⌦k (k = 1 . . . K) into a
block-diagonal matrix

U =

0

BBBBB@

⌦1

⌦2

. . .
⌦n

1

CCCCCA
(1.18)

where the basis {|n, ki} is chosen with an ‘ancilla’ system K of dimension
K. It is easy to check that this gives a unitary matrix U on the enlarged
Hilbert space and the representation

T (⇢) = trK[U(⇢⌦K
�11)U †] (1.19)

where K
�11 is a completely mixed state on K. The Kraus operators of the

completely positive map thus encode a ‘reversible’ evolution if the quantum
system (‘ancilla’) keeps track of which Kraus operator ⌦k has been applied.
As long as the ancilla is not measured (no partial trace taken), the state
remains pure on the enlarged Hilbert space.
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GNS purification (after Gelfand and Naimark, and Segal). Generalize CP
maps between different Hilbert spaces (i.e., the set of density operators).
Read a state ⇢ as such a generalized CP map. The Stinespring dilation
theorem allows to represent this as a pure state

⇢ = tr2| ih | | i =
X

n

p
pn|n⌦ ni, ⇢ =

X

n

pn|nihn| (1.20)

where the states |ni are the eigenvectors of ⇢ with eigenvalues pn. The pure
state | i is a superposition of eigenvectors tensorized with themselves: as
long as the ‘ancilla system’ keeps a copy of the eigenvector, purity is not
lost.

1.2.2 Nakajima–Zwanziger map

System+bath projector. The names Nakajima and Zwanziger are at-
tached to the following natural prescription for the reduced density op-
erator of a system coupled to a bath. This map a actually a completely
positive map. We pick a fixed state ⇢B for the bath; this state is an equi-
librium state of the bath, and specifies the bath parameter “temperature”.
Construct from this and the system density operator ⇢(0) an initial sys-
tem+bath state as a tensor product P (0) = ⇢(0) ⌦ ⇢B (this is a capital ⇢).
Then evolve this state with a Hamiltonian HSB that contains everything:
system and bath Hamiltonian and their mutual coupling. In terms of the
corresponding unitary time evolution

P (0) 7! P (t) = USB(t)P (0)U †
SB

(t) (1.21)

Finally, at time t, the system density operator is obtained in the usual
way as a reduced density operator (tracing out the bath degrees of free-
dom), ⇢(t) = trB[P (t)]. Putting everything together we have the Nakajima-
Zwanziger formula

⇢(0) 7! ⇢(t) = trB
h
USB(t)⇢(0)⌦ ⇢BU

†
SB

(t)
i

(1.22)

Exercise: show that this defines a completely positive map.
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1.2.3 Partial transpose

Definition. For an operator ⇢ on a bipartite Hilbert space, consider a ten-
sor product basis {|n,mi} and define the partially transposed operator ⇢�

(the superscript is half a letter T) by its matrix elements

hn,m|⇢�|n0
,m

0i = hn,m0|⇢|n0
,mi (1.23)

(No complex conjugation here; partially transpose does not mean “partially
hermitean conjugate”.)

The partial transpose is a linear map, but it does not preserve positivity.
To see this, consider a two-qubit Hilbert space and the pure state

⇢ = | +ih +| with | i = |00i+ |11ip
2

(1.24)

In the basis {|0, 0i, |0, 1i, |1, 0i, |1, 1i}, this projector and its partial transpose
are represented by the matrix (please check it)

⇢ =
1

2

0

BBBBB@

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

1

CCCCCA
, ⇢

� =
1

2

0

BBBBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

CCCCCA
(1.25)

The determinant of ⇢� is �1, hence one eigenvalue must be negative, and
⇢
� is not positive.

Note from Eq.(1.23) that the partial transpose is the natural extension
of the transposition T to an enlarged Hilbert space: � = 1⌦T. We therefore
conclude that the transposition is not a completely positive map.

The transposition is closely related to the complex conjugation of each matrix element
of a density matrix, ⇢mn 7! ⇢

⇤
mn: this is easy to see since ⇢ is hermitean and therefore

invariant under hermitean conjugation = transpose and conjugate. It is interesting to
realize that the “simple” conjugation is often related to time reversal. The statement
above thus suggests the following conjecture: if we time-reverse the evolution of a
subsystem, letting the “rest” evolve forward in time as usual, then this dynamics may
lead to negative probabilities.

1.3 The Lindblad master equation

The Lindblad (Gorini-Kossakowski-Sudarshan) theorem provides an equa-
tion of motion for the density operator in terms of a differential equation.
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In technical terms, the time evolution is supposed to be given by a family of
completely positive (dynamical) maps that form a semigroup. The Lindblad
theorem gives the (time-independent) generator of this semigroup. This re-
sult is sometimes called a Markovian master equation because it gives the
time evolution of the density operator at time t in terms of ⇢(t) (the past is
not important).

Semigroup. A family of dynamical maps {Tt|t � 0} that can be concate-
nated (hintereinander ausführen). Indeed, it is plausible that the time evo-
lutions ⇢(0) 7! ⇢(t) = Tt(⇢(0)) can be applied repeatedly,

Tt1+t2 = Tt1Tt2 (1.26)

and the result is also a time evolution. What is missing from the usual
group property: inverse element “T�t”. Evolution is always “forward in
time only” (related to dissipation and loss of information).

Eq.(1.26) is a “functional equation” that is formally solved by an opera-
tor of exponential form

Tt = exp(Lt) (1.27)

where L is called the “generator” of the semigroup; it is itself time-
independent.1 Similar to the Kraus theorem, the constraints of linearity
and complete positivity specify the structure of the generator. This is the
so-called

1.3.1 Lindblad theorem

A completely positive semigroup Tt = exp(Lt) has a generator L that imple-
ments the time evolution of a density operator ⇢ in the form of the follow-
ing differential equation. There is a hermitean operator H and a countable
family of operators Lk (acting on the Hilbert space of the system) with

@⇢

@t
= Lt = �i [H, ⇢] +

X

k

✓
Lk⇢L

†
k
� 1

2

n
⇢, L

†
k
Lk

o◆

= �i [H, ⇢] +
1

2

X

k

⇣h
Lk⇢, L

†
k

i
+

h
Lk, ⇢L

†
k

i⌘
(1.28)

1In more formal jargon: the exponential map provides the homomorphism between
the semigroup of dynamical maps (the group operation being the concatenation of maps)
and the additive group of the time steps.
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The following sketch of a proof is adapted from Nielsen & Chuang and C.
Henkel, J Phys B 2007. A slightly different version can be found in the book
by Breuer & Petruccione (2002).

We evaluate the difference quotient

⇢(t+�t)� ⇢(t)

�t
(1.29)

with the help of the Kraus theorem and take the limit �t ! 0. Write
⇢ = ⇢(t) for simplicity. In the Kraus representation (1.3) for the density
matrix ⇢(t+�t),

⇢(t+�t) =
X

k

⌦
k
⇢⌦†

k
(1.30)

the operators ⌦
k

depend on �t. They can be split into

⌦k = !k1+ Vk (1.31)

where the first term contains the term proportional to the unit operator.
This splitting can be made unique using the following scalar product on
the space of operators:

(A|B) = tr(A†
B) (1.32)

Hence, the projection of ⌦k orthogonal to 1 which is Vk must satisfy

0 = (1|Vk) = tr(1Vk) = trVk (1.33)

in other words, it is traceless. Note that both !k and Vk depend on �t.
In terms of these quantities, the change in the density matrix is com-

puted to be

⇢(t+�t)� ⇢ (1.34)

= (
X

k

|!k|2 � 1)⇢+
X

k

⇣
!
⇤
k
V
k
⇢+ ⇢!kV

†
k

⌘
+

X

k

V
†
k
⇢V

k

where !⇤
k

is complex conjugate to !k. We assume that the following conti-
nuity condition holds

lim
�t!0

h
Â⇢(t+�t)� Â⇢(t)

i
= O(�t) (1.35)
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for all operators Â and initial density matrices ⇢(t). This permits us to
extract all matrix elements in Eq.(1.34) and to conclude that the following
terms must vanish separately

lim
�t!0

X

k

|!k|2 = 1 (1.36)

lim
�t!0

X

k

!
⇤
k
⇢V

k
= 0 (1.37)

lim
�t!0

X

k

V
k
⇢V

†
k
= 0 (1.38)

where the last two lines apply to any density matrix ⇢. We now assume that
the following derivatives exist

� ⌘ lim
�t!0

P
k |!k|2 � 1

�t
(1.39)

�� iH ⌘ lim
�t!0

P
k !

⇤
k
V
k

�t
(1.40)

where � and H are both hermitean.
Differentiating the condition that the dynamical map preserves the trace

of the density matrix, we find

0 = lim
�t!0

tr [⇢(t+�t)� ⇢]

�t

= tr
h
�⇢+ 2�⇢+ lim

�t!0

1

�t

X

k

V
†
k
V
k
⇢

i
(1.41)

Since this must hold for any density matrix ⇢, we find another derivative
(this argument uses that the scalar product (1.32) is non-degenerate)

lim
�t!0

P
k V

†
k
V
k

�t
= �� � 2� (1.42)

We can thus introduce the Lindblad operators Lk by the limiting procedure

Lk ⌘ lim
�t!0

Vkp
�t

(1.43)

where we used that the root of �t � 0 can be taken. Using the deriva-
tives defined in Eqs.(1.39, 1.40, 1.43), we can divide the difference
⇢(t + �t) � ⇢(t) in Eq.(1.34) by �t, and take the limit �t ! 0. This gives
the differential equation (1.28).

Note that a Lindblad operator L proportional to the unit operator auto-
matically gives a zero contribution in the Lindblad form. This is why the
split in Eq.(1.31) makes sense.

14



1.3.2 Examples

Spontaneous emission

of a two-level atom is described by a single “Lindblad operator”

L =
p
� � (1.44)

where the strange unit arises because the “square of L” provides the actual
time derivative of ⇢. This result for spontaneous emission is derived in
Sec.??.

We can best check that this is compatible with the Born-Markov master
equation by switching to the Heisenberg picture. Taking the trace of the
Lindblad master equation (1.28), multiplied with a system operator A, we
find

@

@t
hAi = ih[H, A]i+ 1

2

X

k

D
L
†
k
[A, Lk] +

h
L
†
k
, A

i
Lk

E
(1.45)

where the first term is the familiar one. The second one involves commuta-
tors between A and the Lindblad operators. Simple calculations show that
this leads indeed to the damping of the atomic dipole operators � and �

†

(at the rate �, Eq.(??)) and to the damping of the inversion �3, Eq.(??), as
we found in the previous semester.

Lossy cavity

Let us consider a single-mode cavity with annihilation operator a and con-
sider the non-Schrödinger processes if one mirror is partially transmitting.
There are two Lindblad operators that describe the loss of photons from
the cavity (bosonic operators a, a†) and the fact that thermal radiation can
enter the cavity:

Lloss =
q
(n̄+ 1) a, Labs =

p
n̄ a

† (1.46)

where  is a loss rate (the inverse of the “photon lifetime”) and n̄ =

(eh̄!A/kBT � 1)�1 is the average thermal photon number at the cavity fre-
quency. The temperature T corresponds to the radiation field outside the
cavity. We recover for T = 0 a pure loss channel where the photon an-
nihilation operator in Lem plays the role of the atomic ladder operator in
Eq.(1.44).
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The operator Lloss describes the emission of photons (spontaneous and
stimulated) into the thermal field; the operator Labs describes photon ab-
sorption. This can be easily checked by going back to a two-level model
involving only the number states |0i and |1i and working out the equa-
tions of motion for the density matrix elements ⇢00 and ⇢10. One gets the
rate equations that have been used by Einstein in his proof of the Planck
spectrum (Physikal. Zeitschr. 1917).

Both rates add up in the dynamics of off-diagonal elements of the den-
sity operator ⇢10 (which plays the role of the atomic dipole, remember the
matrix elements ⇢eg): their decay rate is (2n̄+ 1). This is a typical feature
of master equations: the off-diagonal elements decay at least with the half-
sum of the decay rates of the corresponding populations. In practice, their
decay rate is even larger, due to additional dissipative processes (“dephas-
ing”).

Dephasing

is a process where only the off-diagonal elements of the density matrix
decay, while the populations are left unchanged. The Lindblad operator is

Ldeph =
p
�3 (1.47)

with a rate . By solving the Lindblad master equation (exercise!), we find

⇢(t) =

0

@ ⇢ee(0) e�t
⇢eg(0)

e�t
⇢ge(0) ⇢gg(0)

1

A (1.48)

This process can be mimicked in a “classical way” by assuming that a su-
perposition state vector

| (t)i = ↵ ei'(t)|ei+ � e�i'(t)|gi (1.49)

acquires a relative phase '(t) that is “randomly fluctuating”. Experimen-
tally, this happens for a two-level system embedded in a solid: the motion
of the immediate environment perturbs the form of the electronic orbitals
and hence their energy, even if the electron stays in this orbital (“adiabatic
perturbation”). Hence only the energy is randomized, but the population
is kept constant.
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In this context, we can define a quantum-mechanical “average ensem-
ble” by building the density matrix | (t)ih (t)| and taking the average over
the probability distribution of '(t) (denoted by an overbar):

⇢(t) = | (t)ih (t)| (1.50)

With the identification
ei'(t) = e�t (1.51)

we get the same result as with the Lindblad form. This is true if '(t) is a
gaussian random variable with zero average and with variance h'(t)2i =

t. This behaviour is similar to Brownian motion (hence the name “phase
diffusion”), in the mathematics literature, it is called a “Wiener process”.

1.4 Exactly solvable open systems

Material based on the BSc thesis by Ch. Witzorky.
Two examples for a two-level system coupled to a bath. One is based on “de-

phasing”, the other one (see exercises) on “spontaneous emission”. No exact so-
lutions are known when extra terms are added to the system Hamiltonian, for
example, that break the simple form analyzed here.

1.4.1 Dephasing

References: N. G. van Kampen, J Stat Phys 1995 and G. Massimo Palma and Kalle-
Antti Suominen and Artur K. Ekert, Proc Roy Soc London A 1996, in particular
Section 4. The material of this Section can be used as a short student talk.

We consider a two-level system that couples to a quantized field (in the follow-
ing: “bath”) via

Hint = �3

X

k

⇣
gkb

†
k
+ g

⇤
kbk

⌘
(1.52)

with coupling constants gk that are summarized by the spectral density (!k is the
frequency of bath mode k)

S(!) = 2⇡

X

k

|gk|2�(! � !k) (1.53)

From the master equation (1.45) in the Heisenberg picture, we see that the inver-
sion �3 is conserved. Hence, only the “off-diagonal operator” � is affected by the
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bath. Going back to the Schrödinger picture, one can show that the off-diagonal
elements of the density matrix behave like

⇢eg(t) = e
��(t)

⇢eg(0) (1.54)

where the “decoherence factor” is given by

�(t) =
1

2

X

k

|⇠k(t)|2 coth(�!k/2) (1.55)

= 2

1Z

0

d!

2⇡
S(!)

sin
2
(!t/2)

(!/2)2
coth(�!/2) (1.56)

where � = h̄/kBT is the inverse temperature of the initial bath state (we assume
factorized initial conditions) and

⇠k(t) = 2gk
1� e

i!kt

!k

(1.57)

A proof of this result is sketched in Sec.1.4.1 below.

Discussion

For short times, we can expand the effective coupling constants ⇠k(t) and get

t ! 0 : �(t) ⇡ 2t
2
X

k

|gk|2 coth(�!k/2) = 2t
2

1Z

0

d!

2⇡
S(!) coth(�!/2) (1.58)

The quadratic dependence on time is characteristic for this initial regime. In fact,
from perturbation theory, we see that the probability amplitude for states orthog-
onal to the initial one must increase linearly in t. The corresponding probability
thus starts off proportional to t

2. The integral in Eq.(1.58) is often dominated by
large frequencies, and can be made finite with a “UV cutoff frequency” !c = 1/⌧c.
(Without this cutoff, the integral actually diverges and the short-time regime may
even lead to mathematical inconsistencies.) The quadratic regime then applies
only on time scales t < ⌧c that are typically very short compared to the dissipative
dynamics.

At larger times, we can make the approximation that |⇠k(t)|2 approaches a
�-function:2

t ! 1 :
sin

2
(!t/2)

(!/2)2
! 2⇡t �

(1/t)
(!k) (1.60)

2This is based on the integral
Z 1

�1
dx

sin
2
(x/2)

x2
=
⇡

2
. (1.59)
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where the width of the �-function is of the order 1/t. In this limit, only low-
frequency modes contribute to the decoherence factor.

Let us first assume that 1/t is larger than 1/� (intermediate range ⌧c ⌧ t ⌧
h̄/kBT ). Then we can make the zero-temperature approximation coth(�!/2) ⇡ 1

for the relevant modes and get

⌧c ⌧ t ⌧ � : �(t) ⇡ 2S(0)t (1.61)

hence an exponential decay with a rate  = 2S(0) that involves the spectral
strength at zero frequency (more precisely: at frequencies kBT/h̄ ⌧ ! ⌧ !c).
This behaviour is consistent with a Lindblad master equation because e

��t be-
comes exponential in t. We thus see that the Lindblad form is not valid on the
short time scale ⌧c that sets the correlation time of the bath fluctuations.

Finally, when t � �, we have to take into account the thermal occupa-
tion of the low-frequency modes. The integral cannot be performed any more
without knowledge of the behaviour of the function S(!), in particular the
limit lim!!0 S(!) coth(�!/2). One class of spectral densities gives power laws
e
��(t) / t

↵ with exponents ↵ that depend on S(!) and the temperature. An expo-
nential decay at a T -dependent rate is possible as well, in particular in the so-called
“Ohmic case” where the spectrum is linear for small frequencies, S(!) ⇡ ↵! with
a dimensionless coefficient ↵. We then get at large t:

t ! 1 : �(t) ⇡ 4⇡t

1Z

0

d!

2⇡
S(!)�

(1/t)
(!) coth(�!/2)

⇡ 4⇡t

1Z

0

d!

2⇡
↵! �

(1/t)
(!)

2

�!
= 4↵t/� (1.62)

The decoherence rate thus becomes 4↵kBT/h̄.

Calculation of the decoherence factor

The material in this and the following section has been used in the BSc thesis of
Ch. Witzorky. It collects calculations scattered in the literature on this exactly
solvable model.

For the states |gi and |ei of the spin, the action of the full Hamiltonian is easy:

H|gi = |giHg, Hg = � h̄!A

2
+HB �

X

k

h̄(gkb
†
k
+ g

⇤
kbk) (1.63)

where Hg acts on the bath variables only. A similar expression applies to He, with
the opposite sign in the first and last term. We therefore get from the full time
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evolution operator U(t):

h�it = trSB[U
†
(t)|gihe|U(t)⇢(0)⌦ ⇢T (B)] (1.64)

= trSB[|gihe|⇢(0)⌦ U
†
g(t)Ue(t)⇢T (B)] (1.65)

= h�i0trB[U †
g(t)Ue(t)⇢T (B)] (1.66)

The bath trace can be taken for each mode separately since both Ug,e(t) and ⇢T (B)

factorize into a product of single-mode operators. For a single mode b with pa-
rameters g,!, we have (dropping the label k for the moment and assuming real
g)

U
†
g(t) = exp[it(!b

†
b� gb� gb

†
)] = exp[i!t(b

† � �)(b� �)] e
�itg2/! (1.67)

Ue(t) = exp[�it(!b
†
b� gb� gb

†
)] = exp[�i!t(b

†
+ �)(b+ �)] e

�itg2/!

with � = g/!. We now recall the action of the displacement operator D(�) on a
function of the operators b, b†:

D
†
(�)f(b, b

†
)D(�) = f(b+ �, b

†
+ �

⇤
) (1.68)

We can therefore write

U
†
g(t)Ue(t)⇢T (B)

= D
†
(��) exp(i!tb†b)D(��)D†

(�) exp(�i!tb
†
b)D(�) (1.69)

= D
†
(��) exp(i!tb†b)D(�2�) exp(�i!tb

†
b)D(�) (1.70)

where in the last step, we have used D
†
(�) = D(��) and the composition law of

the displacement operators. (The projective phase in QO I, Eq.(3.37) vanishes in
this case.) We now use the identity, similar to Eq.(1.68)

U
†
0(t)f(b, b

†
)U0(t) = f(b e

�i!t
, b

†
e
i!t

) (1.71)

where U0(t) = exp(�i!tb
†
b) is the ‘free’ time evolution operator. Applying this to

the displacement operator D(�2�) = exp(�2�b
†
+ 2�

⇤
b) that is ‘sandwiched’ in

Eq.(1.70), we have

exp(i!tb
†
b)D(�2�) exp(�i!tb

†
b) = D(�2� e

i!t
) =: D(�2�(t)) (1.72)

We end up with a product of three displacement operators

D(�)D(�2�(t))D(�) = e
�2i Im�

⇤
�(t)

D(� � 2�(t))D(�) (1.73)

= e
�2i Im�

⇤
�(t)

e
�2i Im�

⇤(t)�
D(⇠(t)) (1.74)

⇠(t) = 2g
1� e

i!t

!
(1.75)
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where the projective phases cancel and we recover the parameter ⇠k(t) of
Eq.(1.57).

We finally have to calculate the average of a displacement operator in a thermal
state:

hD(⇠t)iB = tr [D(⇠t)⇢T ] (1.76)

where Z is the partition function. The calculation of this trace is typically done in
the number state basis, but this is quite involved. The fastest way is to remember
the P-representation of the thermal state

⇢T =

Z
d
2
↵|↵ih↵|PT (↵), PT (↵) =

e
�|↵|2/n̄

⇡n̄
(1.77)

and to calculate

hD(⇠t)iB = tr

Z
d
2
↵D(⇠t)|↵ih↵|PT (↵)

= tr

Z
d
2
↵ e

i Im ⇠
⇤
t ↵|↵+ ⇠tih↵|PT (↵)

=

Z
d
2
↵ e

i Im ⇠
⇤
t ↵h↵|↵+ ⇠tiPT (↵)

=

Z
d
2
↵ e

2i Im ⇠
⇤
t ↵e

�|⇠t|2/2PT (↵)

At this point, we can take out the exponential factor e�|⇠t|2/2. Note that the projec-
tive phases now remain and determine the temperature dependence of the result.
The gaussian integral can be performed and gives

hD(⇠t)iB = e
�|⇠t|2/2e�|⇠t|2n̄ = exp

⇣
�1

2 |⇠t|
2
coth�!/2

⌘
(1.78)

Going back to h�it, we restore the factor e
�i!At that we forgot in Eqs.(1.67) and

take the product over all modes. This gives a sum in the exponent and hence

h�it = e
��(t)h�i0 (1.79)

�(t) =

X

k

1
2 |⇠k(t)|

2
coth(�!k/2) (1.80)

which is Eq.(1.81).

Long-time limit

We evaluate here in more detail the decoherence factor e��(t) in the limit of long
times. The spectral density is taken in Ohmic form with a dimensionless prefactor
↵ and a cutoff frequency !c:

�(t) = 8↵

1Z

0

d!
!!

2
c

!2 + !2
c

coth
!

2T

sin
2
(!t/2)

!2
(1.81)
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Observe that the integrand is even in !, extend the integration from �1 to 1 and
write sin

2
(!t/2) = Re

1
2(1�e

i!t
). When we shift the integration path from the real

axis to a large semi-circle at infinity, we encounter simple poles in the coth(!/2T )

at ! = i⇠n = 2⇡nT , the so-called Matsubara frequencies. Since

coth
!

2T
= 2T

d

d!
log sinh

!

2T
(1.82)

these poles arise from the zeros of sinh !

2T and have a residue 2T . There is also a
simple pole at ! = i!c, from the cutoff of the mode density. Finally, we have to take
into account half the residue of the singularity at ! = 0. Because coth(!/2T ) ⇡
2T/! for small !, we have a singularity 1/!

2 (a double pole) at the origin. Hence,
the residue is the first derivative of the rest of the integrand:

4↵T Re⇡i
d

d!

!
2
c

!2 + !2
c

(1� e
i!t

) = 4↵T Re⇡i(�it) = 4⇡↵Tt (1.83)

This coincides with the term linear in t that we found with the approximation
�
(t)
(!) to the sin

2 function, Eq.(1.62). The contributions from the other poles give
the sum

�(t) = �t+4↵Re 2⇡i(

1X

n=1

!
2
c

!2
c � ⇠2n

T (1� e
�⇠nt)

i⇠n
+

!
2
c

2i!c

coth
i!c

2T

1� e
�!ct

i!c

) (1.84)

For t � ⌧c, we can set e
�!ct = 0. If we further assume ⇠1t = 2⇡Tt � 1, then

also the sum becomes time-independent, and we have an expression for the offset
K (or “initial slip”) between �(t) and the linear approximation �t. Putting Nc =

!c/2⇡T ,

K = �4↵ cot⇡Nc + 4↵

1X

n=1

N
2
c

n(N2
c � n2)

(1.85)

Note that Nc is not an integer if !c does not coincide with any of the Matsubara
frequencies ⇠n. A typical limiting case is a large cutoff, Nc � 1. The apparent
divergence at n ⇡ Nc is cancelled by the first term. We cannot take the limit
Nc ! 1 in the summand because the sum would not converge. Instead, we
can take Nc to a half-integer so that the cotangent vanishes, split the sum into
n = 1 . . . bNcc and n = dNce . . .1 and approximate the cutoff function of the
mode density by simple limiting forms:

K ⇡ 4↵(

bNccX

n=1

1

n
�N

2
c

1X

n=dNce

1

n3
) (1.86)

Replacing the summations by integrations, we get

K ⇡ 4↵( logNc �N
2
c

�3

N2
c

) = 4↵( log
!c

2⇡T
+ 3) (1.87)
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up to corrections of order unity in the parenthesis. • A numerical evaluation to
check this approximation?

1.4.2 Spontaneous decay

In this model, a two-level atom is coupled to a bosonic environment within the
rotating-wave approximation,

Hint =
X

k

⇣
gk�

†
ak + g

⇤
ka

†
k
�

⌘
(1.88)

and the initial state is an excited atom and the field in the vacuum state. This
model has been discussed in the QO I lecture. Since the quantum number “ex-
citation” (see exercises: sum of photon number and number of excited states) is
conserved, the subspace spanned by the states by |e, vaci and |g, 1ki (atom in the
ground state and one photon in mode k) is closed under time evolution. The
following Ansatz for the full quantum state is thus exact:

| (t)i = ce(t)|e, vaci+
X

k

ck(t)|g, 1ki (1.89)

One can find from the Schrödinger equation a closed integro-differential equation
for the amplitude ce = he, vac| (t)i of the state vector and solve it with the Laplace
transform. The result is a non-exponential decay. An example is shown in Fig.1.1
where the decay happens only partially when the atomic frequency is in a spectral
region where the coupling strength S(!A) = 0 (positive detuning �c).

If the spectral strength of the bath contains sharp peaks, the decay may even
happen in an oscillating manner. Mathematically, this emerges from different
poles in the Laplace transform of ce(t) that give interfering contributions in the
back transformation. A simple exponential decay emerges at long times when one
single pole is located close to the imaginary axis (in the Laplace variable). This
corresponds to negative detuning in Fig.1.1.

Another generic feature are algebraic (non-exponential) “tails” that survive at
long times whenever the spectral strength S(!) can only be defined in a cut com-
plex plane. This typically happens because at zero frequency, some derivative of
S(!) is discontinuous. As a consequence, at very long times, the decay is not ex-
ponential any more (Dittrich & al., 1998, chapter by G.-L. Ingold). This feature
has not yet been measured in quantum optics, to our knowledge. It may actually
be an artefact of the factorized initial conditions for this model. In fact, if similar
techniques are applied for the Bloch equations in this context, one can easily gen-
erate solutions that “leave the Bloch sphere”, i.e., with negative eigenvalues of the
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Figure 1.1: Decay of an excited atom for a spectral strength that sharply
grows above a cutoff frequency: S(!) ⇠ �

1/2(! � !c)1/2 for ! � !c. The
detuning �c = !c�!A from the lower cutoff is given on the right. The ratio
|d(t)|2/|d(0)|2 gives the probability |ce(t)|2. Taken from Boedecker & al.
(2004).

density matrix. This is manifestly non-physical, but it does not seem obvious how
to repair this problem. See, e.g., Davidson & Kozak, J Math Phys 1971 and Barnett
& Stenholm, Phys Rev A 2001.
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Chapter 2

Correlations and Spectra

2.1 Fluctuations and correlations

Introduction

We have so far analyzed so-called ‘one-time averages’ of an open quan-
tum system, hA(t)i = trA⇢(t), given by the density operator at time t, or
via generalized Heisenberg equations. What can we say about time cor-
relation functions like hA(t)B(t0)i where two times enter? It is clear that
we are dealing here with Heisenberg operators A(t) and B(t0). We have
encountered these correlations when discussing vacuum fluctuations. In-
deed, these correlation functions can be interpreted in analogy to classical
stochastic processes where one deals with random variables (instead of op-
erators) and where hA(t)B(t0)i is a measure of the correlations between the
variables A and B at different times.

In practise, one often studies stationary cases in the wide sense where
the correlations depend only on the time difference,

hA(t)B(t0)i = hA(t� t
0)B(0)i (2.1)

One can easily show by cyclic permutations under the trace that this prop-
erty is true if A(t) and B(t0) evolve in time by a Hamiltonian H that com-
mutes with the (initial) state ⇢. This is a model that is not general enough
to account for dissipation and coupling to an unobserved environment, of
course. In the stationary case, we define a “correlation spectrum” by ex-
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panding the correlation function in a Fourier integral

hA(t+ ⌧)B(t)i =
Z d!

2⇡
SAB(!) e

i!⌧ (2.2)

(the sign in the exponential is conventional). There are also different con-
ventions regarding the operator order: a symmetrized operator product is
useful to make the mapping to classical physics easy. In that case, the cor-
relation function 1

2hA(t + ⌧)B(t) + B(t)A(t + ⌧)i is real and depends only
on ⌧ (provided the average is taken in a stationary state). This implies that
the real part of the spectrum is even in !. We keep the operator order here
because we want to deal also with normally ordered averages, for example
ha†(t)a(t0)i.

Exercise. Show that for a single mode (frequency !c in a coherent state
|↵i the quadrature autocorrelation hX(t)X(t0)i has a spectrum with inten-
sities |↵|2 and |↵|2 + 1 at the frequencies ! = !c and �!c.

2.1.1 Power spectrum and signal analysis

The Eq.(2.2) we used to define the spectrum is actually a theorem, named
after Wiener and Khintchine. In many physics textbooks, it does not be-
come clear what is the theorem behind this formula. In brief, Wiener
showed that the following integral exists for a certain class of autocorre-
lation functions:

µA(!) =
Z
d⌧

e�i!⌧ � 1

�i⌧
hA(t+ ⌧)A(t)i (2.3)

. . . and Khintchine showed that the autocorrelation function has a spectral
representation

hA(t+ ⌧)A(t)i =
Z dµA(!)

2⇡
ei!⌧ (2.4)

where dµA(!) is a certain positive integration measure. It is clear that
µA(!) is the integrated spectrum – a quantity that is less singular than the
spectral density (which may contain � functions).

E. Wolf in his books (Born & Wolf, 1959; Mandel & Wolf, 1995) intro-
duces the spectrum via a time-limited Fourier transform:

SA(!, t) = lim
T!1

1

T

*���
Z

t+T/2

t�T/2
dt0 ei!t

0
A(t0)

���
2
+

(2.5)
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which is a formula well-suited for actual data processing. The time integrals
cover only a finite window T and the average can be calculated by shifting
this window across a time series (time averaging). In practice, Eq.(2.5)
can be used if T is larger than the correlation time ⌧c of the process. It
is a simple exercise to show that it coincides with the Wiener-Khinchine
formula. The theorem is a statement of how probable it is that this analysis
of a time series gives the spectrum defined in terms of the autocorrelation
function.

A third definition of the power spectrum appears in the mathematical
theory of (linear) filters. This can be physically motivated by remembering
that we never actually observe the value A(t) of an observable, but some
time average. This can be formalized by considering a “detector function”
'(t) and forming the integral

A' =
Z
dt'⇤(t)A(t) (2.6)

The spectrum then appears as the link between the Fourier transform of the
detector and the variance of the filtered signal (we assume that hA'i = 0)

hA†
'
A'i =

Z d!

2⇡
SA(!) |'̃(!)|2 (2.7)

where '̃(!) is the Fourier transform of the detector function (it exists by
assumption because the detector function is smooth and integrable). The
advantage of this formulation is that the integrals always exists because
'̃(!) has built-in cutoffs at small and large frequencies if it is integrable.
And that in actual experiments, we only have access to the spectral density
in a certain range of frequencies (defined by the resolution of the detec-
tors). By taking for '(t) an exponential ei!t restricted to a finite interval,
one recovers the definition (2.5) of Wolf and the prefactor 1/T that appears
there.

Question. The previous equation was formulated for a stationary process
(autocorrelation function depends on the time difference only). How can
it be generalized to non-stationary processes?
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2.1.2 An interpretation via a sequence of measurements

To conclude, let us formulate a “standard interpretation” of correlation
functions that appears in the literature and that may be taken with care
in the quantum context. For the general correlation

hA(t+ ⌧)B(t)i (2.8)

one makes the reasoning: with some probability distribution P (B(t) = b)

one measures the value b for the observable B at time t. Then, given this
measurement and evolving the system forward over a time step ⌧ , one gets
a value a for the observable A with some conditional probability P (A(t +

⌧) = a|“B(t) has been measured”). This gives the following recipe for the
correlation function as a multi-average

hA(t+ ⌧)B(t)i =
Z
da db aP (A(t+ ⌧) = a| . . .)bP (B(t) = b) (2.9)

Note however, that in quantum mechanics, the measurement at time t in
general perturbs the system. This can only be avoided if we write the sta-
tionary state (at time t) in a diagonal expansion over eigenstates of the
operator B. The conditional probability then involves the time evolution of
one of these eigenstates over a time step ⌧ . If this trick is not applied, it may
happen that the state after the first “measurement” is not a physical state
(it is not a hermitean density operator, but something skew). In addition,
at intermediate times, it may not be appropriate to talk about the observ-
able B having a value b with a positive probability: this line of thought has
somewhat the flavour of a “hidden variable” which we know is problematic
from the EPR paradox.

2.1.3 Examples

Single-mode laser

The frequency spectrum of a single-mode laser is given by the Fourier
transform of the autocorrelation function

Ca(⌧) = lim
t!1

hâ†(t+ ⌧)â(t)i (2.10)
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where the limit t ! 1 ensures that the system has reached a steady state.1

Exercise. Introduce the (formal) Fourier transform of the mode operator

ã(!) =
Z
dt ei!tâ(t) (2.11)

and show that for a stationary correlation function, the Fourier transform
has the covariance

hã†(!)ã(!)i = Sa(!)2⇡�(! � !
0) (2.12)

where Sa(!) is the Fourier transform of Ca(⌧) [Eq.(2.10)].

The simplest case corresponds to a “freely evolving mode” (frequency
!L where

hâ†(t+ ⌧)â(t)i = hâ†âi ei!L⌧ (2.13)

and the spectrum is monochromatic

Sa(!) = hâ†âi�(! � !L) (2.14)

Its amplitude is given by the stationary average photon number hn̂i = hâ†âi.
In a physical system, there are several reasons why the spectrum is not

monochromatic:

— the measurement time T is finite. The �-function in Eq.(2.14) has a
width O(1/T ). This is a “trivial” limitation, and one takes in practice
the limit T ! 1.

— losses from the laser cavity at a rate . This gives a width O() which
can be interpreted in terms of time-frequency uncertainty, now for the
“lifetime of a photon” in the cavity.

1The time difference ⌧ cannot be too large, of course, otherwise one would again get
sensitive to initial transients. This can be made more precise with the mathematical tools
of “filter theory” and wavelet analysis. The physicist helps himself by introducing a mea-
surement interval of length T which overlaps with the stationary regime, and by reducing
the Fourier transform to this interval. The spectrum is then defined in the limit T ! 1
after suitable normalization.
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— spontaneous (not stimulated) emission of the active laser medium.
This gives a fundamental limit to the frequency width of the laser,
named after Schawlow & Townes. The broadening is of the order
O(/hn̂i) and decreases as the laser intensity is raised. It fundamen-
tally arises due to the discrete nature of the photons.

2.2 Quantum regression hypothesis

The approach discussed so far illustrates that correlation functions like
hA(t+ ⌧)B(t)i, in their dependence on the time difference ⌧ have a dynam-
ics that is very similar to the one-time averages that we calculated with the
master equation. Indeed, for the phase diffusion, we assumed that between
t and t + ⌧ , the phase (and even the full laser amplitude) evolves accord-
ing to the same diffusion (or Fokker-Planck) equation as if nothing special
happened at t = 0. The problem here is that one sometimes interprets the
correlation function by saying “at time t, we have measured the operator
A and at the later time t + ⌧ , we measure B”. This is not exactly true as
the operators do not coincide with their expectation values nor with their
eigenvalues (results of projective measurements).2

To elaborate this further, let us write down the meaning of the correla-
tion function ha†(t + ⌧)a(t)i (any other choice of operators would give the
same physics) in the language of “system + bath” dynamics. At the time t,
we identify the Heisenberg and Schrödinger picture and use the stationary
density operator ⇢(t) = ⇢st. We need to know also the density operator
P (t) = Pst for system + bath. Then, without any further approximation

ha†(t+ ⌧)a(t)i = trSB
n
eiH⌧

ae�iH⌧
aPst

o

= trS
n
a trB

⇣
e�iH⌧

aPste
iH⌧

⌘

| {z }
=: %(⌧ |a⇢st)

o
(2.15)

where trB is the ‘partial trace’ over the bath Hilbert space. The result is
2Since about 20 years, Yakir Aharonov has developed a formalims of ‘weak measure-

ments’, intermediate between projective measurements and ‘learning nothing at all’. The
motivation was to learn how a quantum system can be described ‘between’ preparation
and detection. For a review, see Dressel & al. (2014) and Aharonov & al. (2014).
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called a ‘reduced density matrix’ for the system, %(⌧ |a⇢st). It is all we need
to predict the system observable a

† at time t+ ⌧ .
The same concept can be used to construct the evolution of the system

state (in the sense of a density operator) when it interacts with a bath. Take
some initial state,

P (0) = ⇢(0)⌦ ⇢B(eq) (2.16)

typically taken as the uncorrelated tensor product with a reference state
⇢B(eq) for the bath. To justify this approximation, a quote from Melvin Lax
(2000): ‘A bath is by definition a large system that is characterised by few
parameters that do not change when it is put into contact with a system.’
The S+B state P (0) evolves according to the S+B (total) Hamiltonian

P (t) = e�iH⌧
P (0)eiH⌧ (2.17)

and we ‘trace out the bath’ to get a density operator for the system alone:

⇢(t) = trB
⇣
e�iH⌧

⇢(0)⌦ ⇢B(eq) e
iH⌧

⌘
(2.18)

This is the Nakajima-Zwanzig approach to the master equation: ‘blow up’
the system state ⇢(0) to a system+bath state P (0), evolve in time and
project back into the system Hilbert space. The master equation is the
‘generator’ of this evolution:

⇢(t) = eLt⇢(0) ,
d⇢

dt
= L⇢ (2.19)

We can now come back to the density operator % in Eq.(2.15): it is derived
by the same Nakajima-Zwanzig procedure. The difference to the usual
picture is that the initial density operator a⇢st (for the system) or aPst is
not a proper one, since it is not hermitean: we call it a ‘skew state’ in the
following. This difference is not really a problem if one remembers that by
the linearity of the master equation, we can extend it to “skew states” as
well, like ⇢ = | ih�|. We can write, for example:

| ih�|+ |�ih | = 1
2 (| i+ |�i) (h |+ h�|)� 1

2 (| i � |�i) (h |� h�|) (2.20)

To get the non-symmetric skew operator | ih�|, we continue this construc-
tion with the superposition states | i± i|�i. The only technical problem is
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that this linear combination of true states involves negative (and eventu-
ally complex) coefficients, although linear combinations of density opera-
tors are physically only defined for real and positive coefficients (a ‘convex
sum’)

p⇢1 + (1� p)⇢2 (2.21)

Accepting this procedure, we get the following

Quantum regression hypothesis: If the stationary state of system + bath
can be described by the factorized form Pst = ⇢st ⌦ ⇢B, then the correlation
function evolves in the time difference ⌧ according to the same master
equation as the one-time average:

ha†(t+ ⌧)a(t)i = tr
⇣
a
†
%(⌧ |a⇢st)

⌘
= tr

⇣
a
†eL⌧a⇢st

⌘
(2.22)

d

d⌧
% = L%, %(0|a⇢st) = a⇢st (2.23)

The only difference is that one has to evolve a skew operator to find the
“conditional state” %(⌧ |a⇢st). The “Liouville (super)operator” L used here
contains both the commutator with the Hamiltonian and the dissipative
Lindblad terms.

The word “regression” is due to Onsager who formulated a “regres-
sion hypothesis” in classical physics: “fluctuations of a system in equilib-
rium (correlations) show the same dynamics as deviations from equilib-
rium (one-time averages)”. This hypothesis is sometimes called “theorem”
because the assumptions beyond the validity of the master equation seem
minimal. One thing to check is that the system+bath approach gives ex-
actly the same reduced dynamics even for skew states (the bath average
of the coupling vanishes in first order, for example). An exception occurs
when “memory terms” play a role, but then even the Lindblad master equa-
tion does not apply: the generator L cannot be constant in time. So within
the second-order perturbation theory and in the Markov (no memory) limit,
we have good reasons to use the quantum regression “theorem”. Combined
with the stationarity of the correlations [see Eq.(4.49)], one thus gets the
required spectra from the usual dissipative “forward-in-time” evolution.
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