
Chapter 4

Correlations and Spectra

4.1 Fluctuations and correlations

Introduction

We have so far analyzed so-called ‘one-time averages’ of an open quan-
tum system, hA(t)i = trA⇢(t), given by the density operator at time t, or
via generalized Heisenberg equations. What can we say about time cor-
relation functions like hA(t)B(t0)i where two times enter? It is clear that
we are dealing here with Heisenberg operators A(t) and B(t0). We have
encountered these correlations when discussing vacuum fluctuations. In-
deed, these correlation functions can be interpreted in analogy to classical
stochastic processes where one deals with random variables (instead of op-
erators) and where hA(t)B(t0)i is a measure of the correlations between the
variables A and B at different times.

In practise, one often studies stationary cases in the wide sense where
the correlations depend only on the time difference,

hA(t)B(t0)i = hA(t� t
0)B(0)i (4.1)

One can easily show by cyclic permutations under the trace that this prop-
erty is true if A(t) and B(t0) evolve in time by a Hamiltonian H that com-
mutes with the (initial) state ⇢. This is a model that is not general enough
to account for dissipation and coupling to an unobserved environment, of
course. In the stationary case, we define a “correlation spectrum” by ex-
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panding the correlation function in a Fourier integral

hA(t+ ⌧)B(t)i =
Z d!

2⇡
SAB(!) e

i!⌧ (4.2)

(the sign in the exponential is conventional). There are also different con-
ventions regarding the operator order: a symmetrized operator product is
useful to make the mapping to classical physics easy. In that case, the cor-
relation function 1

2hA(t + ⌧)B(t) + B(t)A(t + ⌧)i is real and depends only
on ⌧ (provided the average is taken in a stationary state). This implies that
the real part of the spectrum is even in !. We keep the operator order here
because we want to deal also with normally ordered averages, for example
ha†(t)a(t0)i.

Exercise. Show that for a single mode (frequency !c in a coherent state
|↵i the quadrature autocorrelation hX(t)X(t0)i has a spectrum with inten-
sities |↵|2 and |↵|2 + 1 at the frequencies ! = !c and �!c.

4.1.1 Power spectrum and signal analysis

The Eq.(4.2) we used to define the spectrum is actually a theorem, named
after Wiener and Khintchine. In many physics textbooks, it does not be-
come clear what is the theorem behind this formula. In brief, Wiener
showed that the following integral exists for a certain class of autocorre-
lation functions:

µA(!) =
Z
d⌧

e�i!⌧ � 1

�i⌧
hA(t+ ⌧)A(t)i (4.3)

. . . and Khintchine showed that the autocorrelation function has a spectral
representation

hA(t+ ⌧)A(t)i =
Z dµA(!)

2⇡
ei!⌧ (4.4)

where dµA(!) is a certain positive integration measure. It is clear that
µA(!) is the integrated spectrum – a quantity that is less singular than the
spectral density (which may contain � functions).

E. Wolf in his books (??) introduces the spectrum via a time-limited
Fourier transform:

SA(!, t) = lim
T!1

1

T

*���
Z

t+T/2

t�T/2
dt0 ei!t

0
A(t0)

���
2
+

(4.5)
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which is a formula well-suited for actual data processing. The time integrals
cover only a finite window T and the average can be calculated by shifting
this window across a time series (time averaging). In practice, Eq.(4.5)
can be used if T is larger than the correlation time ⌧c of the process. It
is a simple exercise to show that it coincides with the Wiener-Khinchine
formula. The theorem is a statement of how probable it is that this analysis
of a time series gives the spectrum defined in terms of the autocorrelation
function.

A third definition of the power spectrum appears in the mathematical
theory of (linear) filters. This can be physically motivated by remembering
that we never actually observe the value A(t) of an observable, but some
time average. This can be formalized by considering a “detector function”
'(t) and forming the integral

A' =
Z
dt'⇤(t)A(t) (4.6)

The spectrum then appears as the link between the Fourier transform of the
detector and the variance of the filtered signal (we assume that hA'i = 0)

hA†
'
A'i =

Z d!

2⇡
SA(!) |'̃(!)|2 (4.7)

where '̃(!) is the Fourier transform of the detector function (it exists by
assumption because the detector function is smooth and integrable). The
advantage of this formulation is that the integrals always exists because
'̃(!) has built-in cutoffs at small and large frequencies if it is integrable.
And that in actual experiments, we only have access to the spectral density
in a certain range of frequencies (defined by the resolution of the detec-
tors). By taking for '(t) an exponential ei!t restricted to a finite interval,
one recovers the definition (4.5) of Wolf and the prefactor 1/T that appears
there.

Question. The previous equation was formulated for a stationary process
(autocorrelation function depends on the time difference only). How can
it be generalized to non-stationary processes?
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4.1.2 An interpretation via a sequence of measurements

To conclude, let us formulate a “standard interpretation” of correlation
functions that appears in the literature and that may be taken with care
in the quantum context. For the general correlation

hA(t+ ⌧)B(t)i (4.8)

one makes the reasoning: with some probability distribution P (B(t) = b)

one measures the value b for the observable B at time t. Then, given this
measurement and evolving the system forward over a time step ⌧ , one gets
a value a for the observable A with some conditional probability P (A(t +

⌧) = a|“B(t) has been measured”). This gives the following recipe for the
correlation function as a multi-average

hA(t+ ⌧)B(t)i =
Z
da db aP (A(t+ ⌧) = a| . . .)bP (B(t) = b) (4.9)

Note however, that in quantum mechanics, the measurement at time t in
general perturbs the system. This can only be avoided if we write the sta-
tionary state (at time t) in a diagonal expansion over eigenstates of the
operator B. The conditional probability then involves the time evolution of
one of these eigenstates over a time step ⌧ . If this trick is not applied, it may
happen that the state after the first “measurement” is not a physical state
(it is not a hermitean density operator, but something skew). In addition,
at intermediate times, it may not be appropriate to talk about the observ-
able B having a value b with a positive probability: this line of thought has
somewhat the flavour of a “hidden variable” which we know is problematic
from the EPR paradox.

4.1.3 Examples

Single-mode laser

The frequency spectrum of a single-mode laser is given by the Fourier
transform of the autocorrelation function

Ca(⌧) = lim
t!1

hâ†(t+ ⌧)â(t)i (4.10)
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where the limit t ! 1 ensures that the system has reached a steady state.1

Exercise. Introduce the (formal) Fourier transform of the mode operator

ã(!) =
Z
dt ei!tâ(t) (4.11)

and show that for a stationary correlation function, the Fourier transform
has the covariance

hã†(!)ã(!)i = Sa(!)2⇡�(! � !
0) (4.12)

where Sa(!) is the Fourier transform of Ca(⌧) [Eq.(4.10)].

The simplest case corresponds to a “freely evolving mode” (frequency
!L where

hâ†(t+ ⌧)â(t)i = hâ†âi ei!L⌧ (4.13)

and the spectrum is monochromatic

Sa(!) = hâ†âi2⇡�(! � !L) (4.14)

Its amplitude is given by the stationary average photon number hn̂i = hâ†âi.
In a physical system, there are several reasons why the spectrum is not

monochromatic:

— the measurement time T is finite. The �-function in Eq.(4.14) has a
width O(1/T ). This is a “trivial” limitation, and one takes in practice
the limit T ! 1.

— losses from the laser cavity at a rate . This gives a width O() which
can be interpreted in terms of time-frequency uncertainty, now for the
“lifetime of a photon” in the cavity.

1The time difference ⌧ cannot be too large, of course, otherwise one would again get
sensitive to initial transients. This can be made more precise with the mathematical tools
of “filter theory” and wavelet analysis. The physicist helps himself by introducing a mea-
surement interval of length T which overlaps with the stationary regime, and by reducing
the Fourier transform to this interval. The spectrum is then defined in the limit T ! 1
after suitable normalization.
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— spontaneous (not stimulated) emission of the active laser medium.
This gives a fundamental limit to the frequency width of the laser,
named after Schawlow & Townes. The broadening is of the order
O(/hn̂i) and decreases as the laser intensity is raised. It fundamen-
tally arises due to the discrete nature of the photons.

4.2 Quantum regression hypothesis

The approach discussed so far illustrates that correlation functions like
hA(t+ ⌧)B(t)i, in their dependence on the time difference ⌧ have a dynam-
ics that is very similar to the one-time averages that we calculated with the
master equation. Indeed, for the phase diffusion, we assumed that between
t and t + ⌧ , the phase (and even the full laser amplitude) evolves accord-
ing to the same diffusion (or Fokker-Planck) equation as if nothing special
happened at t = 0. The problem here is that one sometimes interprets the
correlation function by saying “at time t, we have measured the operator
A and at the later time t + ⌧ , we measure B”. This is not exactly true as
the operators do not coincide with their expectation values nor with their
eigenvalues (results of projective measurements).2

To elaborate this further, let us write down the meaning of the correla-
tion function ha†(t + ⌧)a(t)i (any other choice of operators would give the
same physics) in the language of “system + bath” dynamics. At the time t,
we identify the Heisenberg and Schrödinger picture and use the stationary
density operator ⇢(t) = ⇢st. We need to know also the density operator
P (t) = Pst for system + bath. Then, without any further approximation

ha†(t+ ⌧)a(t)i = trSB
n
eiH⌧

ae�iH⌧
aPst

o

= trS
n
a trB

⇣
e�iH⌧

aPste
iH⌧

⌘

| {z }
=: %(⌧ |a⇢st)

o
(4.15)

where trB is the ‘partial trace’ over the bath Hilbert space. The result is
2Since about 20 years, Yakir Aharonov has developed a formalims of ‘weak measure-

ments’, intermediate between projective measurements and ‘learning nothing at all’. The
motivation was to learn how a quantum system can be described ‘between’ preparation
and detection. For a review, see ? and ?.
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called a ‘reduced density matrix’ for the system, %(⌧ |a⇢st). It is all we need
to predict the system observable a

† at time t+ ⌧ .
The same concept can be used to construct the evolution of the system

state (in the sense of a density operator) when it interacts with a bath. Take
some initial state,

P (0) = ⇢(0)⌦ ⇢B(eq) (4.16)

typically taken as the uncorrelated tensor product with a reference state
⇢B(eq) for the bath. To justify this approximation, a quote from Melvin ?: ‘A
bath is by definition a large system that is characterised by few parameters
that do not change when it is put into contact with a system.’ The S+B
state P (0) evolves according to the S+B (total) Hamiltonian

P (t) = e�iH⌧
P (0)eiH⌧ (4.17)

and we ‘trace out the bath’ to get a density operator for the system alone:

⇢(t) = trB
⇣
e�iH⌧

⇢(0)⌦ ⇢B(eq) e
iH⌧

⌘
(4.18)

This is the Nakajima-Zwanzig approach to the master equation: ‘blow up’
the system state ⇢(0) to a system+bath state P (0), evolve in time and
project back into the system Hilbert space. The master equation is the
‘generator’ of this evolution:

⇢(t) = eLt⇢(0) ,
d⇢

dt
= L⇢ (4.19)

We can now come back to the density operator % in Eq.(4.15): it is derived
by the same Nakajima-Zwanzig procedure. The difference to the usual
picture is that the initial density operator a⇢st (for the system) or aPst is
not a proper one, since it is not hermitean: we call it a ‘skew state’ in the
following. This difference is not really a problem if one remembers that by
the linearity of the master equation, we can extend it to “skew states” as
well, like ⇢ = | ih�|. We can write, for example:

| ih�|+ |�ih | = 1
2 (| i+ |�i) (h |+ h�|)� 1

2 (| i � |�i) (h |� h�|) (4.20)

To get the non-symmetric skew operator | ih�|, we continue this construc-
tion with the superposition states | i± i|�i. The only technical problem is
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that this linear combination of true states involves negative (and eventu-
ally complex) coefficients, although linear combinations of density opera-
tors are physically only defined for real and positive coefficients (a ‘convex
sum’)

p⇢1 + (1� p)⇢2 (4.21)

Accepting this procedure, we get the following

Quantum regression hypothesis: If the stationary state of system + bath
can be described by the factorized form Pst = ⇢st ⌦ ⇢B, then the correlation
function evolves in the time difference ⌧ according to the same master
equation as the one-time average:

ha†(t+ ⌧)a(t)i = tr
⇣
a
†
%(⌧ |a⇢st)

⌘
= tr

⇣
a
†eL⌧a⇢st

⌘
(4.22)

d

d⌧
% = L%, %(0|a⇢st) = a⇢st (4.23)

The only difference is that one has to evolve a skew operator to find the
“conditional state” %(⌧ |a⇢st). The “Liouville (super)operator” L used here
contains both the commutator with the Hamiltonian and the dissipative
Lindblad terms.

The word “regression” is due to Onsager who formulated a “regres-
sion hypothesis” in classical physics: “fluctuations of a system in equilib-
rium (correlations) show the same dynamics as deviations from equilib-
rium (one-time averages)”. This hypothesis is sometimes called “theorem”
because the assumptions beyond the validity of the master equation seem
minimal. One thing to check is that the system+bath approach gives ex-
actly the same reduced dynamics even for skew states (the bath average
of the coupling vanishes in first order, for example). An exception occurs
when “memory terms” play a role, but then even the Lindblad master equa-
tion does not apply: the generator L cannot be constant in time. So within
the second-order perturbation theory and in the Markov (no memory) limit,
we have good reasons to use the quantum regression “theorem”. Combined
with the stationarity of the correlations [see Eq.(3.49)], one thus gets the
required spectra from the usual dissipative “forward-in-time” evolution.
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4.3 Resonance fluorescence

Overview

As an example, we propose to study here the spectrum of the light emitted
by a laser-driven two-level atom. This emission is usually called “fluores-
cence”.3 Its spectrum shows characteristic deviations from the radiation
of a classical dipole. These demonstrate that both the atom and the field
are genuinely quantum-mechanical systems. Therefore, resonance fluores-
cence is a key problem in quantum optics.

4.3.1 Dipole correlations and Bloch equations

Emission spectrum

It is a simple exercise to show that the electric field operator contains
two contributions: the “free field” that is independent of the atom, and
a “source field” that involves the atomic dipole operator. (For the proof,
use the operator-valued Maxwell equations.) Using some approximations,
the far field at distance x from the atom, is given by Eq.(??).

We have learnt before that the spectrum of the emitted light is the
Fourier transform of the field correlation function. As we have seen in
Eq.(??), this field is proportional to the dipole itself, and we therefore com-
pute its autocorrelation function in normal order

G1(⌧, t) = h�†(t+ ⌧)�(t)i (4.24)

We shall suppose that the atom has reached a stationary state determined
by the laser field and its radiative decay. The correlation function then only
depends on the time difference ⌧ . Using the hermitean conjugate of the
autocorrelation function, it can be shown that

S(! � !L) ⌘
Z +1

�1
d⌧ e�i(!�!L)⌧ h�†(t+ ⌧)�(t)i

= 2Re
Z +1

0
d⌧ e�i(!�!L)⌧ h�†(t+ ⌧)�(t)i, (4.25)

3Depending on the order of magnitude of the radiative decay time, one also uses the
names “luminescence” or “phosphorescence”.
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so that we only have to deal with the case ⌧ > 0. This is the spectrum
that we shall calculate in the following. Note that it only depends on the
difference frequency ! � !L.

Quantum regression formula

(This section repeats the reasoning of Sec.4.2.) For the time being, we have
worked with Heisenberg operators. The average in the dipole correlation
function can be written as

h�†(t+ ⌧)�(t)i = trAF

h
U

†(⌧)�†(t)U(⌧)�(t)⇢AF (t)
i

= trA
h
�
†(t) trF

⇣
U(⌧)�(t)⇢AF (t)U

†(⌧)
⌘i

(4.26)

where U(⌧) is the complete unitary time evolution and ⇢AF (t) the
atom+field density matrix at time t.

The expression involving the field trace is a reduced atomic operator
that resembles the reduced atomic density matrix. Indeed, the reduced
density operator can be written

⇢A(t+ ⌧) = trF
⇣
U(⌧)⇢AF (t)U

†(⌧)
⌘

(4.27)

with the same unitary operator. We now make the hypothesis that at time
t, the atom+field system density matrix factorizes (as we assumed in the
derivation of the master equation),

⇢AF (t) = ⇢
(st)
A

⌦ ⇢
(eq)
F

(4.28)

where ⇢(st)
A

is the stationary density matrix for the atom and ⇢
(eq)
F

an equi-
librium state for the field (the environment). Recall that this is actually
an approximation based on the Markov assumption: correlations between
atom and field decay rapidly.

Comparing (4.26) and (4.27), we observe that both the density matrix
and the atomic operator

P�(⌧) ⌘ trF
⇣
U(⌧)�(t)⇢AF (t)U

†(⌧)
⌘

(4.29)

are determined by the same combination of evolving with the complete
time evolution and taking the trace. We can therefore use the same master
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equation that we derived for ⇢A to compute the time-dependence of P�(⌧).
This statement is the “quantum regression theorem”.4 The only difference
is the initial state that involves an additional dipole operator

P�(0) ⌘ �⇢
(st)
A

. (4.30)

We have chosen to use the Schrödinger picture at (the anyway arbitrary)
time t. According to the quantum regression theorem, the equation of mo-
tion for the operator P�(⌧) is

d

d⌧
P� =

1

ih̄
[HA, P�] + L[P�]. (4.31)

Eigenvalues of the Bloch equations

The explicit solution of (4.31) involves some algebraic manipulations that
are not very illuminating, and we shall give only a sketch of the most im-
portant techniques and results.

One of the main ideas is to write P�(⌧) as a sum of eigenvectors of the
master equation:5

P�(⌧) =
X

�

P
(�)
� e��t (4.32)

Each of these vectors evolves in time with an exponential e��t. Each eigen-
value � (for positive real part) gives a contribution to the spectrum that is
a Lorentzian peak:

Z +1

0
d⌧ e�i(!�!L)⌧e��t =

�i

! � !L � i�

The real part of lambda thus gives the width of the corresponding peak,
while Im� gives the frequency shift with respect to the laser frequency.
Since the stationary density matrix is reached at long times, we can con-
clude that all eigenvalues of the master equation must have positive real
part (the density matrix cannot explode exponentially).

4We shall use the word “formula” because there are people who insist that it is based
on an approximation and hence not a real theorem.

5More precisely, the matrices are “right eigenvectors” of a superoperator L that
combines the Hamiltonian commutator and the Lindblad parts of the master equation:
LP (�)

� = ��P
(�)
� . Since L is in general not symmetric (hermitean), one must distinguish

between left and right eigenvectors.
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We can immediately state that � = 0 is one eigenvalue of the master
equation. It is easy to see that the corresponding eigenfunction P

(st)
� is the

stationary density matrix ⇢(st)
A

(simply because its time derivative vanishes
by construction). For the operator P�(⌧), we thus also find an eigenvalue
� = 0, and

P�(⌧) = P
(st)
� + terms that vanish as ⌧ ! 1 (4.33)

This corresponds to a peak in the emission spectrum centred at the laser
frequency with zero width — hence a � function in frequency. The atomic
fluorescence thus contains a spectral contribution at precisely the frequency
of the laser — the “elastically scattered light”. This contribution also occurs
for a classical dipole when it oscillates in phase with the external field (once
the initial transients have died out) and represents the “classical” part of the
fluorescence spectrum (atom = classical dipole, photons = classical field).

For the operator P�(⌧), the eigenfunction corresponding to the elastic
emission is also proportional to the stationary density matrix. We can fix
the proportionality factor by computing the trace (that must be equal to the
initial trace because it is preserved under the master equation generated by
L):

P
(st)
� = ⇢

(st)
A

trP�(0) = ⇢
(st)
A

tr
⇣
�⇢

(st)
A

⌘
= ⇢

(st)
A
⇢
(st)
eg

The elastic spectrum is thus proportional to the square of the off-diagonal
density matrix element:

S(! � !L) = 2Re tr
⇣
�
†
⇢
(st)
A

⌘
⇢
(st)
eg

�i

! � !L � i0

= 2 Im
|⇢(st)

eg
|2

! � !L � i0

= 2⇡ �(! � !L) |⇢(st)eg
|2.

This spectrum is radiated by the “average” dipole that, in the stationary
state, oscillates at the same frequency as the external field. We recall that
the average dipole is

hdi / h�(t) + �
†(t)i = ⇢

(st)
eg

e�i!Lt + c.c.

This expectation value generates the closest approximation to a “classical”
field that is possible for this quantum system. It is called the “elastically
scattered light” as it has the same frequency as the driving laser.
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The other eigenvalues of the master equation provide the “inelastic”
components of the fluorescence spectrum. If we expand the operator P�(⌧)

in terms of the Pauli matrices (and a term proportional to the identity ma-
trix), the master equation reduces to the Bloch equations with the 3 ⇥ 3

matrix (for zero temperature)
0

BB@

��/2 � 0

�� ��/2 �⌦

0 ⌦ ��

1

CCA . (4.34)

The eigenvalues �� of this matrix are the solutions of the cubic equation
⇣
1
2� � �

⌘2
(� � �) + ⌦2

⇣
1
2� � �

⌘
+�2 (� � �) = 0 (4.35)

Since it is cubic, this equation must have at least one real root, say �3.
Since its imaginary part is zero, we thus find another spectral component
centred at the laser frequency. This one has a finite width, however. Putting
⌦ = 0 (extremely weak driving), we find �3 = �, so that this peak has a
width given by the decay rate – this explains the fact that the spontaneous
decay rate �e is identical to the “linewidth” of the atomic transition (at
least for the present model; other decoherence mechanisms may broaden
the linewidth even without changing the spontaneous decay rate).

The other two roots �1,2 are complex and conjugates of each other (be-
cause the polynomial has real coefficients). In the limit ⌦,� � �, we find
that |�1,2| � �, and keeping only the leading terms, we get (exercise!)

�1,2 ⇡ ±i⌦R + 3
4�

 

1� �2

3⌦2
R

!

�3 ⇡ 1
2�

 

1 +
�2

⌦2
R

!

where ⌦R =
p
⌦2 +�2 is the generalized Rabi frequency. In this “strong

driving” limit, the spectrum thus contains two additional side peaks, dis-
placed by the generalized Rabi frequency from the laser frequency. This
spectral structure is called the “Mollow triplet”. It is shown schematically
in Fig. 4.1. The heights of the peaks can be obtained from a more detailed
analysis, and is discussed in the exercises.
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Figure 4.1: The emission spectrum of a driven two-level atom (the Mollow
triplet). Parameters: detuning � = 0, Rabi frequency ⌦ = 10 �, zero tem-
perature. The ratio between the peak heights is 1 : 3 : 1. The peak surfaces
are in the ratio 1 : 2 : 1.

4.3.2 Mollow spectrum

The peaks in the Mollow spectrum can be interpreted in terms of transitions
between the dressed states of the Jaynes Cummings Paul model. Let us
focus on zero detuning for simplicity. We have seen previously that the
dressed states have energies

En± ⇡ const. + nh̄!L ± h̄

2
⌦R

where we have neglected the dependence of the Rabi frequency on the
photon number (this is a good approximation for a classical laser field with
many photons). The emission at the laser frequency comes from transitions

|n,+i ! |n� 1,+i and |n,�i ! |n� 1,�i,

as shown schematically in Fig. 4.2. Since both dressed states |n±i contain
the excited state, they can indeed decay to lower states, thus converting
one laser photon into a fluorescence photon.

The transitions on the sidebands !L ± ⌦R occur when the spin label
of the state changes under the transition: from |n,+i to |n � 1,�i or
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Figure 4.2: Interpretation of the Mollow triplet in terms of transitions be-
tween dressed states.

from |n,�rangle to |n � 1,+i. Here, the fluorescence photon is shifted
in frequency because of the splitting between the dressed states. For the
linewidths of the transitions, one has to come back to a calculation like the
one we sketched before.

As an alternative interpretation, one can look at the Rabi oscillations the
atom performs in a laser field: because the atom flops at the Rabi frequency
⌦R between the ground and excited state, its emission is modulated. There-
fore, the emission spectrum contains, in addition to the carrier at the laser
frequency (as expected from the stationary state) sidebands at !L ±⌦R. As
a general remark, this inelastic spectrum illustrates that a two-level atom
is the simplest nonlinear medium one can imagine. Indeed, the correla-
tion function h�(t + ⌧)�(t)i is nonzero and gives the source strength for a
“coherent two-photon field”. The photons are emitted in pairs with a sum
frequency !1 + !2 = 2!L since h�(t+ ⌧)�(t)i is proportional to e�2i!Lt.

A few numerical results based on the solution of the Bloch equations.
The numerics has been ‘upgraded’ to allow for skew input states where the
Bloch vector is complex.
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Figure 4.3: (left) Dipole correlation function h�†(⌧)�(0)i. Blue (red): real
(imaginary) part. (right) Spectrum: Mollow triplet. (top row) Laser on
resonance, driving the atom into saturation. For a weaker Rabi frequency,
the sidebands merge with the central line, leaving a single peak. (bottom)
Laser off-resonance, weaker Rabi frequency. The side bands appear at the
‘generalised Rabi frequency’ (|⌦|2 + �2)1/2 (dashed lines). For a stronger
Rabi frequency, the central line gets stronger. The dotted line on the left
gives the asymptotic value of the correlation, computed analytically from
the stationary solution of the Bloch equations.
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Figure 4.4: (left) Squeezing correlation Q(⌧) = h�(⌧)�(0)i. Note the zero
value at ⌧ = 0. (right) Spectrum of the corresponding quadratures X✓ =

ei✓� + e�i✓
�
†: the quadrature in phase with the laser (✓ = 0) peaks at the

central line, the quadrature out of phase peaks at the sidebands. Parameter
regime: laser on resonance, driving the atom into saturation.
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4.3.3 Photon correlations and antibunching

Intensity correlation function: probability to detect one photon at time t

and another one at time t + ⌧ . Glauber’s theory of photodetection (any
book on quantum optics): normal and time-ordered operator average

G2(⌧, t) = h�†(t)�†(t+ ⌧)�(t+ ⌧)�(t)i (4.36)

Quantum regression formula: expectation value of �†
� at time step ⌧ after

dissipative evolution

G2(⌧, t) = tr[�†
� eL⌧P (t)], P (t) = �⇢(t)�† = �⇢

(st)
�
† (4.37)

we have denoted by eL⌧ the solution of the master equation over the time
step ⌧ . Observe that the starting point P (t) is a correct quantum state, it
is generated from the equilibrium state by projecting to the ground state.
(This is not a skew operator as we encountered it for the dipole correlation
function.)

Hence physical interpretation of G2 correlation (up to normalization):
probability to find the atom in the excited state after starting in the ground
state. Immediate consequence: G2(0, t) = 0 because some delay is needed
to excite the atom. This is called anti-bunching: the photons have the ten-
dency not to arrive closely together (“bunched”).

This is a “non-classical” feature, because if � were a classical random
variable, one can show from the Schwarz inequality (exercise) that

classical: G2(0, t) � |G1(0, t)|2 > 0 (4.38)

where the first-order correlation function G1 was defined in Eq.(4.24). In
practice, the “classical limit” is reached if there are many emitters that are
excited by the laser and that radiate independently one of the other. At
any time ⌧ � 0, one then finds some excited emitter that is able to emit a
photon. In this situation, anti-bunching can be used as a signature that just
one emitter is present in the excitation region. This is used, for example, in
biophysical systems where photon correlations can be used to measure the
(position-dependent) decay rates � inside a focused laser spot with a weak
drive amplitude.
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Figure 4.5: (left) Intensity correlation G2(⌧) = h�†(0)�†(⌧)�(⌧)�(0)i. Note
the ‘anti-bunching hole’ at ⌧ = 0, characteristic for a single emitter. (right)
Corresponding spectrum: negative intensities characteristic for squeezing
(non-classical light). Parameter regime: laser on resonance, driving the
atom into saturation.

4.4 Squeezing correlations in a cavity

Taken from Chapter 7 in the quantum optics book by ? and Chapter 14 in
the book by ?.

Split of the system into cavity (one operator a) and input/output fields
Ain(t), Aout(t). Correlation functions for input and output fields. Quantum
Langevin equations for cavity operator, including squeezing Hamiltonian
for cavity field, cavity damping rate and input noise. Calculation of station-
ary correlations in Fourier space. Discussion of homodyne measurement of
quadratures, of the corresponding noise spectra. Definition of squeezing in
the frequency domain, shot-noise reference level.

The input field Ain(t) may contain, in addition to its quantum noise, an
incident laser beam. More generally, we can write for the normally ordered
correlation (denoted by : · · · :)

h: Ain(t+ ⌧)Ain(t) :i = |E|2g1(⌧) (4.39)

where |E|2 is proportional to the laser intensity and g1(⌧) its normalized
autocorrelation function. Its Fourier transform describes the spectrum of
the laser.
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The output field Aout(t) is what the experimenter can measure. By per-
forming a homodyne measurement (see the chapter on quantum states of
light and the beam splitter in QO I), one can measure quadrature operators
that are defined as

Aout(t) =
1

2
(X✓(t) + iY✓(t)) e

i✓�i!0t (4.40)

where !0 is the carrier frequency and ✓ a phase controlled by the reference
beam in the homodyne measurement. (Eq.(4.40) gives only the positive-
frequency component of the output field.) In radio communications, the
quadratures X✓(t) describe the envelope (or frequency modulation) of the
carrier signal that oscillates at !0, they typically evolve on a much slower
time scale. The same applies to optical signals. This justifies an expansion
of the light field in a narrow frequency band around !0.

The following autocorrelation functions of the quadratures provide in-
formation about squeezing:

hX✓(t+ ⌧)X✓(t)i, hY✓(t+ ⌧)Y✓(t)i. (4.41)

They can be measured from the fluctuations of the signal difference at the
two output ports of a homodyne detector. For a field in the vacuum state,
these correlations are equal and given by the so-called shot-noise limit.
With the normalization

Aout(t) =

s
h̄!0

2"0

Z d!

2⇡
a(!) e�i!t

,

h
a(!), a(!0)†

i
= 2⇡�(! � !

0) (4.42)

one gets the following shot-noise level for the quadrature autocorrelation

hX✓(t+ ⌧)X✓(t)ivac =
h̄!0

2"0
�(⌧) (4.43)

which corresponds to a flat spectrum SSN = h̄!0/2"0.
System-bath formalism for cavity losses, input and output noise opera-

tors yields the equations of motion for the cavity field [Eqs.(14.44, 48) in
?], the quantum Langevin equations

da

dt
= � i

h̄
[a,H]� 

2
a+

p
Ain(t) (4.44)

da

dt
= � i

h̄
[a,H] +



2
a�

p
Aout(t) (4.45)
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The second equation can be read as the time-reversed version: “given the
output field at a later time, what can we infer for the cavity field at an
earlier time”. This is getting more and more imprecise as one moves into
the past, because of the damping. Combining these two equations, we get

Aout = �Ain +
p
a (4.46)

The fact that the output is related to the field at the same time t is due to
the Markov approximation that has been applied in deriving these quantum
Langevin equations: losses are determined by the value of the field at the
same time. In general, they also depend on past values of the field; the
non-Markovian formalism is still subject to current research.

Model for damped cavity filled with a nonlinear medium:

H = h̄!ca
†
a+

ih̄

2

⇣
" e�i!pta

†2 � "
⇤ e�i!pta

2
⌘

(4.47)

where " is proportional to the amplitude of the ‘pump field’ at frequency
!p. Switch to rotating frame a(t) = ã(t) e�i!pt/2, Ain(t) = Ãin(t) e�i!pt/2 and
find from Eq.(4.44)

dã

dt
= �i�cã+ "ã

† � 

2
ã+

p
Ãin(t) (4.48)

where �c = !c � !p/2 is related to the detuning of the pump relative to
twice the cavity resonance. We drop the tilde and compute the equations
of motion for the following quadrature operators

a =
x+ iy

2
ei✓ (4.49)

where the phase reference is half the phase of the pump field: " = |"| e2i✓.
Details to be continued . . . see the Chapter by ? for the final result of

the squeezing spectrum (for �c = 0):

h: Xout(!), Xout(!
0) :i = hXout(!)Xout(!

0)i (4.50)

�hXout(!)ihXout(!
0)i � hXout(!)Xout(!

0)ivac
= SXout(!)SSN�(! + !

0) (4.51)

Measured relative to the shot noise, one gets for the two quadratures
[Fig.4.6]:

SXout(!) =
2|"|

!2 + (/2� |"|)2
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Figure 4.6: Noise spectrum of output quadratures Xout and Yout, normalised
to shot noise.

SY out(!) =
�2|"|

!2 + (/2 + |"|)2 (4.52)

‘Perfect squeezing’ corresponds to a normalised spectrum SY = �1: it hap-
pens for |"| = /2 and ! = 0. Note that this is accompanied by a diverging
spectrum in the orthogonal quadrature. For |"| > /2, an instability appears
to happen that is not described by this linearised theory. It is likely that by
taking into account ‘pump depletion’, one gets a finite result. This corre-
sponds to the pump photons that are converted into pairs of cavity photons
by the nonlinear process (spontaneous parametric down conversion).

4.5 The fluctuation–dissipation theorem

(Material not covered in SS 2019.)
The fluctuation-dissipation theorem (FDT) is one of the key results of linear re-
sponse theory. It is actually a statement that appears in many different forms, the
common feature being a link between, on the one hand, the fluctuations of some
system observable in thermal equilibrium and, on the other, a response function
for this observable when the system is brought out of equilibrium by an external
perturbation. One of the early statements of the FDT is, for example, the Ein-
stein relation between the diffusion coefficient and the friction coefficient for a
Brownian particle ?. We outline in this section a proof of the FDT for quantum
fluctuations, following ?.
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4.5.1 Statement

Consider two observables A and B and their two-time correlation function

CAB(t, t
0
) := hA(t)B(t

0
)i � hA(t)ihB(t

0
)i (4.53)

where A(t) is an operator in the Heisenberg picture and the average h· · ·i is taken
in thermal equilibrium (� = 1/kBT , Z = tr(e

��H
))

h· · ·i := 1

Z
tr(e

��H · · · ), (4.54)

with H the system Hamiltonian. Since equilibrium is a stationary state, the one-
time average hA(t)i = hAieq is actually time-independent and the correlation func-
tion CAB(t, t

0
) only depends on the time difference ⌧ = t � t

0. We consider its
Fourier transform (the cross-correlation spectrum)6

SAB(!) :=

+1Z

�1

d⌧ CAB(⌧) e
i!⌧ (4.55)

The spectrum exists whenever the observables A(t) and B(t
0
) decorrelate suffi-

ciently fast as the time difference |⌧ | increases, as expected on physical grounds.
If A = B, SAA(!) = SA(!) specifies the strength of the fluctuations of A in a
frequency band around !.

The FDT links the correlation spectrum to the response function �AB(!):

SAB(!) =
1

i!

h̄!

1� e��h̄!
(�AB(!)� �BA(!)

⇤
) (4.56)

The response function �AB connects the deviation of the observable A from its
equilibrium value to a perturbation described by the interaction Hamiltonian
Hint(t) = �f(t)B. To first order in the (c-number valued) “force” f(t):

hA(t)if � hAieq =

+1Z

�1

�AB(⌧)f(t� ⌧) d⌧ (4.57)

By causality, �AB(⌧) vanishes for ⌧ < 0 and decreases to zero for ⌧ ! 1. As a
consequence, its Fourier transform �AB(!),

�AB(!) =

+1Z

0

�AB(⌧) e
i!⌧

d⌧, (4.58)

6In the SS 2010 lecture, we used the opposite sign convention for !.
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is analytical in the upper half of the complex !-plane.
In the literature, the FDT is often stated in terms of a symmetrized correlation

function. We retain a specific operator ordering here because these correlation
functions directly provide photodetector signals or excited state decay rates in the
context of quantum electrodynamics. It also turns out that the genuine contribu-
tion of quantum fluctuations can be identified in a simple way.

4.5.2 Proof

We first connect the response function to a commutator. The equation of motion
for the Heisenberg operator A reads, in the presence of the external force,

d

dt
A(t) = � i

h̄
[A(t), H] +

i

h̄
[A(t), B(t)] f(t), (4.59)

where H is the Hamiltonian without the perturbation. The first term generates the
free evolution of the operator, Afree(t) = e

iHt
A(0)e

�iHt, while the second is due
to the perturbation. Solving to first order in f(t) and taking the expectation value
according to Eq.(4.54) leads to

hA(t)if = hAfree(t)i+
i

h̄

+1Z

0

h[Afree(t), Bfree(t� ⌧)]if(t� ⌧) d⌧, (4.60)

where the time dependence of the ‘free’ operators is generated by the evolution
under H. This will be the case for any time-dependent operator in the following,
and we therefore drop the subscript ‘free’.

The first term in Eq.(4.60) is actually time-independent in the canonical en-
semble defined in Eq.(4.54) and therefore equal to the equilibrium value hAieq.
From the second term, we can read off the response function introduced in
Eq.(4.57),

�AB(⌧) =

8
<

:

i

h̄
h[A(t), B(t� ⌧)]i for ⌧ � 0,

0 for ⌧ < 0,

(4.61)

The response function is thus itself a correlation function between operators; it
does not depend on t because of the stationarity of equilibrium. It can be checked
directly that for hermitean A and B, �AB(⌧) is real as it is in classical linear re-
sponse theory where it links two real quantities.

Taking the Fourier transform of �AB, we get an expression for the response
function in terms of a field correlation spectrum

�AB(!) =
i

h̄

+1Z

0

e
i!⌧ h[A(⌧), B(0)]i d⌧ . (4.62)
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By causality, the time integral is running over one half of the real axis only. We can
make an integral over all ⌧ appear, as it occurs in the spectrum (4.55), by forming
the combination

�ih̄ {�AB(!)� �BA(�!)} =

+1Z

�1

e
i!⌧ {CAB(⌧)� CBA(�⌧)} d⌧ . (4.63)

We added and subtracted hA(⌧)ihB(0)i under the integral to generate the correla-
tion functions CAB(⌧) and CBA(�⌧), whose Fourier integrals exist separately. The
following identity that we prove below, allows to permute operators occurring in
correlation spectra computed in the canonical ensemble:

+1Z

�1

e
i!⌧

CBA(�⌧) d⌧ = e
��h̄!

+1Z

�1

e
i!⌧

CAB(⌧) d⌧. (4.64)

In the classical theory, h̄ = 0 and operator ordering is irrelevant. Using this in the
second term of Eq.(4.63), we get the FDT:

�ih̄ {�AB(!)� �BA(�!)} =

⇣
1� e

��h̄!
⌘
SAB(!). (4.65)

With �BA(�!) = �BA(!)
⇤, which follows from the reality of �BA(⌧), this reduces

to Eq.(4.56). The spectrum SAA(!) is positive, as it should, for a passive medium
with a non-negative “absorption rate”, ! Im�AA(!) � 0.

To prove the identity (4.64), we start from the right hand side and write the
equilibrium average of Eq. (4.54) explicitly

e
i!⌧ hA(⌧)B(0)i = e

i!⌧
Z

�1
Tr

h
e
��H

e
iH⌧/h̄

A e
�iH⌧/h̄

B

i
(4.66)

One shifts the integration path into the complex ⌧ -plane, putting ⌧ 7! ⌧ �
ih̄�. The convergence of the ⌧ -integral at |⌧ | ! 1 is ensured by subtracting
e
i!⌧ hA(⌧)ihB(0)i. Along the shifted path, Eq.(4.66) becomes

e
�h̄!

e
i!⌧

Z
�1

Tr

h
e
��H

e
(�+i⌧/h̄)H

A e
�(�+i⌧/h̄)H

B

i

= e
�h̄!

e
i!⌧

Z
�1

Tr

h
e
��H

B e
iH⌧/h̄

A e
�iH⌧/h̄

i

= e
�h̄!

e
i!⌧ hB(0)A(⌧)i, (4.67)

using cyclic permutation under the trace. A similar argument shows that the last
correlation function is equal to hB(�⌧)A(0)i, leading to CBA(�⌧). The ⌧ -integral
then yields the right hand side of Eq. (4.64).
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4.5.3 Dipole fluctuations of a polarizable particle

Our first illustration of the FDT will also serve later to compute the dispersion in-
teraction between polarizable particles. We take two components of the electric
dipole operator, Dj and Dk, and ask for the cross-correlation spectrum SDjDk(!)

that we denote Djk(!) in the following. For the FDT, we need the response func-
tion for the dipole subject to the interaction Hamiltonian �Dkf(t). It is clear
that this represents the excitation of the dipole by an electric field E(t) = ekf(t),
linearly polarized along the xk-axis. The corresponding response function is
well known in frequency space: it is the polarizability tensor ↵jk(!). We use
the convention that in frequency space, the induced dipole moment is given by
D̂j(!) =

P
k
↵jk(!)Êk(!). For the Fourier transform D̂j(!) of the dipole moment,

the FDT yields the following correlation function
D
D̂j(!) D̂

⇤
k(!

0
)

E
= Djk(!) 2⇡�(!�!

0
) (4.68)

=
1

i!


h̄!

1 � e�h̄!/kBT

� h
↵jk(!)� ↵

⇤
kj(!)

i
�(!�!

0
)

If the dipole polarizability is symmetric (which can be shown to be true if the
dipole matrix elements are real), we thus get

Dij(!) =
2h̄

1 � e�h̄!/kBT
Im↵jk(!) (4.69)

It is important to notice that dissipation / Im↵jk(!) does not vanish at absolute
zero (T = 0K). However, the remaining fluctuations affect only positive frequen-
cies! This can easily be seen by the following limit

lim
T!0

1

1 � e�h̄!/kBT
=

8
>><

>>:

1 ! > 0

1/2 ! = 0

0 ! < 0

(4.70)

This asymmetry illustrates the fundamental difference between classical and quan-
tum fluctuation spectra. Indeed, classical quantities commute and this leads to a
spectral density that is symmetric in !. This result is recovered from the FDT in
the high-temperature limit where

lim
T!1

h̄!

1 � e�h̄!/kBT
= kBT. (4.71)

4.5.4 The electromagnetic vacuum

Our second example is the electromagnetic field and its fluctuations. (See the
book by ? for details.) For the correlation between the fields Ej(r) and Ek(r0), we
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need the response function to the interaction Hamiltonian �Ek(r0)f(t). This cor-
responds physically to a point dipole moment located at position r0 and oriented
along the xk-axis. The response function in question is thus given, in frequency
space, by the Green function G(r, r0;!). We use the convention that (Fourier trans-
form of) the electric field Êj(r,!) radiated by a point dipole moment D̂k(!) lo-
cated at r0 is given by

Êj(r,!) =
X

k

Gjk(r, r
0
;!)D̂k(!) (4.72)

The FDT for the fluctuating fields is then given by

D
Êj(r,!)Ê

⇤
k(r

0
,!

0
)

E
=

2h̄

1� e�h̄!/kBT
Im

�
Gjk(r, r

0
;!)

 
2⇡�(!�!

0
) (4.73)

using the reciprocity of the Green tensor, Gkj(r0, r;!) = Gjk(r, r0;!) (?). This
result establishes the correspondence between field fluctuations (left side) and
dissipation (right side) which is expressed in terms of the imaginary part of the
Green’s function. It can be checked, using a direct calculation in the plane-wave
basis, that Eq.(4.73) coincides with the result of elementary field quantization.

The advantage of Eq.(4.73) is that it applies very generally to an arbitrary ar-
rangement of objects, described by a spatially varying linear permittivity and per-
meability. Absorbing objects are also allowed for: they would play in the quantum
theory the role of operator Langevin sources for the field via their polarization
fluctuations, see, e.g., Eqs.(4.68, ??). The FDT (4.73) is strictly valid, however,
only at equilibrium, i.e. when the field and the sources are at the same tempera-
ture. In this case, it can also be derived directly from the fluctuations of dipolar
sources. These give rise to radiation with a strength proportional to Eq.(4.68).
For a given distribution of sources, the Green function G(r, r0;!) maps the dipole
fluctuations at r0 onto the electromagnetic field at r. Using properties of G and
the requirement of equilibrium between the field and its sources (no net energy
transport), one can derive (4.73). For a more detailed discussion, see ??.
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