Advanced Quantum Optics

Winter term 2005/06 Carsten Henkel/Martin Wilkens

Exercise session 1 Hand out: 20 October 2005 hand in: 27 October 2005

Problem 1.1 – Heisenberg operators (5 points)

Given the standard free Hamiltonians (i.e., ignoring any interactions), compute the free time evolution of (i) the annihilation operator \hat{a} of a single field mode; (ii) the fermionic annihilator σ (with $\sigma(t = 0) = |g\rangle\langle e|$).

Problem 1.2 – Thermal field 'state' (5 points)

The *Q*-function of a single field mode is defined by the diagonal matrix element $Q(\alpha) := (1/\pi)\langle \alpha | \hat{\rho} | \alpha \rangle$ of the density operator $\hat{\rho}$ with respect to the coherent states $|\alpha\rangle$. The thermal 'state' of the mode is defined by a density operator which is a normalized sum of projectors on number states (stationary states), $|n\rangle\langle n|$, with Boltzmann-like weights $\propto e^{-\beta E_n}$ determined by the energies E_n of the number states.

Compute the *Q*-function for the thermal state. Make a sketch and discuss its width as a function of temperature.